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“If you want to amount to anything as a witch,
Magrat Garlick, you got to learn three things.
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1.1 Physical embodiments of a bit

Information technology devices, such as desktop computers, laptops, palmtops, bits and bytes
cellular phones, DVD players and many others have pervaded our every day life to
such extent that it is difficult to find a person who would not have at least some
idea about what bits and bytes are. I shall assume therefore that the reader knows
about both, enough to understand that a bit is the “smallest indivisible chunk of
information” and that a byte is a string of eight bits.

Yet the concept of a bit as the “smallest indivisible chunk of information” is a discretization of
information is a
convention

somewhat stifling convention. It is possible to dose information in any quantity,
not necessarily in discrete chunks, and this is how many analogue devices, including
analogue computers, work. What more, it takes a considerable amount of signal
processing, and consequently also power and time, to maintain a nice rectangular
shape of pulses representing bits in digital circuits. Electronic circuits that can
handle information directly, without chopping it to bits and arranging it into bytes,
can be orders of magnitude faster and more energy efficient than digital circuits.

How are bits and bytes actually stored, moved and processed inside digital de- storing and
manipulating
bits

vices? There are many ways to do this. Figure 1.1 shows a logic diagram of one of
the simplest memory cells, a flip-flop.

R

S

¬Q

Q

Figure 1.1: A very simple flip-flop comprising two cross-coupled nand gates.

The flip-flop in the figure comprises two cross-coupled nand gates. It is easy to a flip-flop can
be used to
implement a
1-bit memory
cell

analyze the behavior of the circuit. Suppose R is set to 0 and S is set to 1. If R
is 0 then regardless of what the second input to the nand gate at the bottom is,
its output must be 1. Therefore the second input to the nand gate at the top is
1 and so its output Q must be 0. Because the roles of R and S in the device are
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completely symmetric, this result implies that if R is set to 1 and S to 0 we’ll get
that Q = 1 and ¬Q = 0. Table 1.1 sums up these simple results.

R S Q ¬Q
0 1 0 1
1 0 1 0

Table 1.1: Q and ¬Q as functions of R and S for the flip-flop of Figure 1.1.

Observe that once the value of Q has been set to either 0 or 1, setting both R

and S to 1 retains the pre-set value of Q. This is easy to see. Suppose Q has been
set to 1. Therefore ¬Q is 0 and so one of the inputs to the upper nand gate is
0, which implies that its output must be 1 indeed. In order for ¬Q to be 0, both
inputs to the lower nand gate must be 1, and so they are because R = 1.

Now suppose that Q has been pre-set to 0 instead. Hence the second input to
the lower nand gate is 0 and therefore the output of the gate, ¬Q is 1, which is
exactly what is required in order for Q to be 1, on account of ¬Q being the second
input to the upper nand gate.

And so our flip-flop behaves like a simple memory device. By operating on its
inputs we can set its output to either 0 or 1 and then by setting both inputs to 1
we can make it remember the pre-set state.

It is instructive to have a closer look at what happens inside the nand gates whenwhat is inside
the nand gate the device remembers its pre-set state. How is this remembering accomplished?

2 kΩ 2 kΩ

R
A

B

+5 V

¬ (A ∧B)

Figure 1.2: A diode-transistor-logic implementation of a nand gate.

Figure 1.2 shows a simple diode-transistor logic (DTL) implementation of a nand

gate. Each of the diodes on the two input lines A and B conducts when 0 is applied
to its corresponding input. The diodes disconnect when 1 is applied to their inputs.
The single transistor in the circuit is an n-channel transistor. This means that the
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channel of the transistor conducts when a positive charge, logical 1, is applied to
the gate. Otherwise the channel blocks. Let us consider what is going to happen
if any of the two inputs is set to 0. In this case the corresponding diode conducts
and the positive charge drains from the gate of the transistor. Consequently its
channel blocks and the output of the circuit ends up being 1. On the other hand
if both inputs are set to 1, both diodes block. In this case positive charge flows
towards the gate of the transistor and accumulates there and the transistor channel
conducts. This sets the potential on the output line to 0. The resulting truth table
of the device is shown in table 1.2. This is indeed the table of a nand gate.

A B ¬ (A ∧B)
0 0 1
0 1 1
1 0 1
1 1 0

Table 1.2: The truth table of the DTL nand gate shown in figure 1.2.

The important thing to observe in the context of our considerations is that it is
the presence or the absence of the charge on the transistor gate that determines
the value of the output line. If there is no accumulation of positive charge on the
gate, the output line is set to 0, if there is a sufficient positive charge on the gate,
the output line is set to 1.

Returning to our flip-flop example, we can now see that the physical embodiment the charge
stored on the
gate of a
transistor
represents the
bit

of the bit, which the flip-flop “remembers”, is the electric charge stored on the gate
of the transistor located in the upper nand gate of the flip-flop circuit. If there
is an accumulation of positive charge on the transistor’s gate, the Q line of the
flip-flop becomes 0 and if the charge has drained from the gate, the Q line becomes
1. The Q line itself merely provides us with the means of reading the bit.

We could replace the flip-flop simply with a box and a pebble. An empty box
would correspond to a drained transistor gate, and this we could then read as 1,
and if we find a pebble in the box, we would read this as 0. The box and the pebble
would work very much like the flip-flop in this context.

It is convenient to reverse the convention and read a pebble in the box as 1 and
its absence as 0. We could do the same, of course, with the flip-flop, simply by
renaming Q to ¬Q and vice versa.
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Seemingly we have performed an act of conceptual digitization in discussing and
then translating the physics of the flip-flop and of the DTL nand gate to the box
and the pebble picture.

A transistor is really an analog amplifier and it is possible to apply any potentialthe two states of
a transistor are
connected by a
continuous
transition

to its gate, which yields a range of continuous values to its channel’s resistance.
In order for the transistor to behave like a switch, and for the circuit presented
in figure 1.2, to behave like a nand gate, we must condition its input and output
voltages: these are usually restricted to {0 V,+5 V} and switched very rapidly
between the two values. Additionally parts of the circuit may be biased at −5 V
in order to provide adequate polarization. Even then, when looked at with an
oscilloscope, pulses representing bits do not have sharp edges. Rather there are
transients there and these must be analyzed rigorously at the circuit design stage
in order to eliminate unexpected faulty behavior.

On the other hand, the presence or the absence of the pebble in the box appar-
ently represents two very distinct separate states. There are no transients here.
The pebble either is or is not in the box. Tertium non datur.

Yet, observe that even this is a convention, because, for example, we could placethe two states of
a pebble in a box
are connected by
a continuous
transition too

the pebble in such a way that only a half of it would be in the box, and the other
half would be outside. How should we account for this situation?

In binary, digital logic we ignore such states. But there are other types of logic,

many-valued
logic

which allow for the pebble to be half-way or a third or any other portion of it within
the box. Such logic systems fall under the category of many-valued logics [22], some
of which are even infinitely-valued . An example of an infinitely-valued logic is the
popular fuzzy logic [38] commonly used in robotics, data bases, image processing
and expert systems.

When we get to look at quantum logic more closely these considerations willquantum logic
as an
infinitely-valued
logic

acquire a new deeper meaning, which will eventually lead to the notion of super-
position of quantum states. Quantum logic is one of these systems, where a pebble
can be half way in one box and half way in another one. And the boxes don’t even
have to be adjacent, sic!

1.2 Registers

A row of flip-flops connected with each other in various ways constitutes a register.a register
Depending on how the flip-flops are connected the register may be used just as a
store, or it can be used to perform some arithmetic operations.

Figure 1.3 shows a simple three-bit modulo-7 counter implemented with threea 3-bit modulo-7
counter JK flip-flops. A JK flip-flop is a more complex device than the one shown in
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J J JQ Q Q

K K KQ̄ Q̄ Q̄

T T T

A B C

ABC

clock

clear

Figure 1.3: A modulo-7 counter made of three JK flip-flops.

figure 1.1, but all that the reader needs to know in order to understand how the
counter works are the following two rules:

1. The state Q of the JK flip-flop toggles on the trailing edge of the clock pulse
T , i.e., when the state of the input T changes from 1 to 0;

2. Applying 0 to clear resets Q to 0.

Assume that the whole counter starts in the {C = 0, B = 0, A = 0} state. On the the states of the
registerfirst application of the pulse to the clock input, A toggles to 1 on the trailing edge of

the pulse and stays there. The state of the register becomes {C = 0, B = 0, A = 1}.
On the second application of the clock pulse A toggles back to 0, but this change
now toggles B to 1 and so the state of the register becomes {C = 0, B = 1, A = 0}.
On the next trailing edge of the clock pulse A toggles to 1 and the state of the
register is now {C = 0, B = 1, A = 1}. When A toggles back to 0 on the next
application of the clock pulse, this triggers the change in B from 1 to 0, but this
in turn toggles C and so the state of the register becomes {C = 1, B = 0, A = 0},
and so on. Dropping C =, B = and A = from our notation describing the state of
the register we can see the following progression:

{000} → {001} → {010} → {011} → {100} → . . .

We can interpret the strings enclosed in curly brackets as binary numbers and upon
having converted them to decimal notation we obtain

0→ 1→ 2→ 3→ 4→ . . .
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The device counts clock pulses. It does so by remembering the previous value and
then adding 1 to it on detecting the trailing edge of the clock pulse. When A, B,
and C all become 1 at the same time, the nand gate at the bottom of the circuit
applies clear to all three flip-flops and so A, B, and C get reset to 0. This happens
so fast that the counter does not stay in the {111} configuration for an appreciable
amount of time. It counts from 0 through 6 transitioning through seven distinct
stable states in the process.

At first glance we may think that the counter jumps between the discrete states.transitions
between the
states

A closer observation of the transitions with an oscilloscope shows that the counter
glides between the states through a continuum of various configurations, which can-
not be interpreted in terms of digital logic. But the configurations in the continuum
are unstable and the gliding takes very little time, so that the notion of the jumps
is a good approximation1.

By now we know already that a possible physical embodiment of a bit is ana register made
of boxes and
pebbles

accumulation of electric charge on the gate of a transistor inside a flip-flop. And
we can also think about the presence or the absence of the charge on the gate in
the same way we think about the presence or absence of a pebble in a box. And
so, instead of working with a row of flip-flops we can work with a row of boxes and
pebbles and such a system is also a register, albeit a much slower one and more
difficult to manipulate too.

The following figure shows an example of a box and a pebble register thatan “almost
quantum”
register

displays some features that are reminiscent of quantum physics.

The register contains 3 boxes, which are stacked vertically. Their position
corresponds to the energy of a pebble that may be placed in a box. The higher
the location of the box, the higher the energy of the pebble. The pebbles that
are used in the register have a peculiar property. When two pebbles meet in
a single box, they annihilate and the energy released in the process creates a
higher energy pebble in the box above. Of course, if there is already a pebble

1An alert reader will perhaps notice that what we call a jump in our every day life is also a
gliding transition that takes a jumper, e.g., a cat, through a continuum of unstable configurations
that may end eventually with the cat sitting stably on top of a table.
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there, the newly created pebble and the previously inserted pebble annihilate
too and an even higher energy pebble is created in the next box up.

Let us observe what is going to happen if we keep adding pebbles to the
box at the bottom of the stack. When we place the first pebble there, the
system looks as follows:

•

Now we add another pebble to the box at the bottom. The two pebbles
annihilate and a new higher energy pebble is created in the middle box:

••
→ bang! → •

When we add a pebble again to the box at the bottom, nothing much
happens, because there is no other pebble in it, and so the state of the register
becomes:

•
•

But fireworks fly again, when we add a pebble to the box at the bottom
this time:

••
• → bang! → •• → bang! →

•

The first bang occurs because there are two pebbles in the box at the
bottom of the stack. The pebbles annihilate and the energy released creates a
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higher energy pebble in the middle box. But there is already a pebble there,
so the two annihilate in the second bang, and a pebble of even higher energy
is now created in the top box.

In summary the register has transitioned through the following stable
states:

→
•
→ • →

•
• →

•

This register, as you see, is also a counter. Eventually we’ll end up having
pebbles in all three boxes. Adding a yet another pebble to the box at the
bottom will release a chain reaction, which will clear all boxes and eject a very
high energy pebble from the register altogether - this, therefore, is a modulo-7
counter.

The reason why this register is reminiscent of some quantum systems is
because, first, its successive states are truly separate, without any in-betweens,creation and

annihilation
operators

i.e., pebbles don’t move between boxes. Instead they simply vanish from a
box, and if the energy released in the process is high enough, a new pebble
emerges from nothingness in a higher energy box. This model bears some
resemblance to quantum field theory, where particle states can be acted on
by annihilation and creation operators. We will see similar formalism applied
in the discussion of the Feynman quantum computer.

The second reason is that here we have a feature that resembles the Pauli

exclusion principle, which states that no two fermions can coexist in the same

state.

1.3 Fluctuating registers

The stable states of the register we have seen in the previous sections were all very
well defined. For example the counter would go through the sequence of seven stable
configurations:

{000} → {001} → {010} → {011} → {100} → {101} → {110}

Once a register would glide into one of these it would stay there, the values of its bits
unchanging, until the next clock pulse would shift it to the next state. In general
a 3-bit register can store numbers from 0 ({000}) through 7 ({111}) inclusive. Let
us then focus on such a 3-bit register. It does not have to be a counter this time.
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Suppose also that the register is afflicted by the following malady2. When setA fluctuating
register by some electronic procedure, let us say that there are some toggle switches to do

this on the side of the package, to hold a binary number {101} its bits start to
fluctuate randomly so that the register spends only 72% of the time in the {101}
configuration, and 28% of the time in every other configuration, flickering at random
between them. Suppose that the same happens when the register is set to hold
other numbers, {000}, {001}, . . . , {111} as well, i.e., the register ends up flickering
between all possible configurations at random, but visits its set configuration 72%
of the time. At first glance a register like this seems rather useless, but we could
employ its fluctuations for example in Monte Carlo codes.

Now assume that after the register has been set, we cover its toggles with a
masking tape and we are not allowed to ascertain or even describe the state of the
register simply by looking at the toggles. Instead we have to resort to other means.
The point of this exercise is not to torture the reader with needless equilibristics.
Rather our aim is to prepare the reader for description of similar systems, which
do not have any toggles at all.

The register exists in one of eight stable states associated with the setting of the States of the
fluctuating
register

toggles. Each state manifests by visiting a certain configuration more often than
other configurations. However, this time we can no longer associate the state with
the configuration as closely as we have done for the register that was not subject
to random fluctuations. The state is now something more abstract, something that
we can no longer associate with a simple single observation of the register. Instead
we have to look at the register for a long time in order to identify its preferred
configuration, and thus its state.

Let us introduce the following notation for these states of the fluctuating register:

p0̄ is the state that fluctuates around {000}
p1̄ is the state that fluctuates around {001}
p2̄ is the state that fluctuates around {010}
p3̄ is the state that fluctuates around {011}
p4̄ is the state that fluctuates around {100}
p5̄ is the state that fluctuates around {101}
p6̄ is the state that fluctuates around {110}
p7̄ is the state that fluctuates around {111}

2The malady may have been designed into the register on purpose.
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Although we have named the states p0̄ through p7̄, we cannot at this early stage say
what these objects really are. In order to endow the states of the fluctuating register
with a mathematical structure we have to figure out how they can be measured and
manipulated.

So, how can we ascertain which one of the eight states defined above the registerObserving a
state of the
fluctuating
register

is in, if we are not allowed to peek at the setting of its switches?
In order to do this we must observe the register for a long time writing down

its observed configurations perhaps at random time intervals3. If the register is
in the p5̄ state, approximately 72% of the observations should return the {101}
configuration with other results evenly spread over other configurations. Assuming
we have made n5 measurements of the register in total, n0

5 observations would
show the register in the {000} configuration, n1

5 observations would show it in the
{001} configuration, and so on for every other configuration, ending with n7

5 for
the {111} configuration4. We can now build the following column vector for which
we would expect the following:




n0
5/n5 ≈ 0.04

n1
5/n5 ≈ 0.04

n2
5/n5 ≈ 0.04

n3
5/n5 ≈ 0.04

n4
5/n5 ≈ 0.04

n5
5/n5 ≈ 0.72

n6
5/n5 ≈ 0.04

n7
5/n5 ≈ 0.04




We do not expect n6
5/n5 = 0.04 exactly, because, after all, the fluctuations of the

register are random, but we do expect that we should get very close to 0.04 if n5 is
very large. For n5 →∞ the ratios in the column vector above become probabilities.
This lets us identify state p5̄ with the column of probabilities of finding the registerThe column of

probabilities as
the
representation
of a state of the
fluctuating
register

3An important assumption here is that we can observe the register without affecting its state.
4The superscripts 0 through 7 in n0

5 through n7
5 and also in p0

5 through p7
5 further down

are not exponents. We do not raise n5 (or p5) to the powers of 0 through 7. They are just
indexes, which say that, e.g., n4

5 is the number of observations made on a register in state p5̄
that found it in configuration {100} ≡ 4. There is a reason why we want this index to be placed
in the superscript position rather than in the subscript position. This will be explained in more
detail when we get to talk about forms and vectors in section 1.7 on page 28. If we ever need to
exponentiate an object with a superscript index, e.g., p3

5, we will enclose this object in brackets

to distinguish between a raised index and an exponent, e.g.,
`
p3

5

´2
.
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in each of the eight possible configurations:

p5̄ ≡




p0
5 = 0.04

p1
5 = 0.04

p2
5 = 0.04

p3
5 = 0.04

p4
5 = 0.04

p5
5 = 0.72

p6
5 = 0.04

p7
5 = 0.04




It is often convenient to think of the fluctuating register in terms of a statistical A statistical
ensemble of
registers

ensemble.
Suppose that instead of a single fluctuating register we have a very large number

of static, non-fluctuating registers, of which 4% are in the {000} configuration,
4% are in the {001} configuration, 4% are in the {010} configuration, 4% are
in the {011} configuration, 4% are in the {100} configuration, 72% are in the
{101} configuration, 4% are in the {110} configuration and 4% are in the {111}
configuration. Now let us put all the registers in a hat, mix them thoroughly,
and draw at random n5 registers from the hat. Of these n0

5 will be in the {000}
configuration, n1

5 in the {001} configuration, . . ., n6
5 in the {110} configuration

and n7
5 in the {111} configuration. If the whole ensemble has been mixed well, we

would expect that

n0
5/n5 ≈ 0.04

n1
5/n5 ≈ 0.04

n2
5/n5 ≈ 0.04

n3
5/n5 ≈ 0.04

n4
5/n5 ≈ 0.04

n5
5/n5 ≈ 0.72

n6
5/n5 ≈ 0.04

n7
5/n5 ≈ 0.04

Logically and arithmetically such an ensemble of static registers from which we
sample n5 registers is equivalent to a single randomly fluctuating register at which
we look (without disturbing its overall condition) n5 times.

The eight states our fluctuating register can be put in can be characterized by Representing
states of the
register by
columns of
probabilities
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the following column vectors of probabilities:

p0̄ ≡




p0
0 = 0.72

p1
0 = 0.04

p2
0 = 0.04

p3
0 = 0.04

p4
0 = 0.04

p5
0 = 0.04

p6
0 = 0.04

p7
0 = 0.04




p1̄ ≡




p0
1 = 0.04

p1
1 = 0.72

p2
1 = 0.04

p3
1 = 0.04

p4
1 = 0.04

p5
1 = 0.04

p6
1 = 0.04

p7
1 = 0.04




p2̄ ≡




p0
2 = 0.04

p1
2 = 0.04

p2
2 = 0.72

p3
2 = 0.04

p4
2 = 0.04

p5
2 = 0.04

p6
2 = 0.04

p7
2 = 0.04




p3̄ ≡




p0
3 = 0.04

p1
3 = 0.04

p2
3 = 0.04

p3
3 = 0.72

p4
3 = 0.04

p5
3 = 0.04

p6
3 = 0.04

p7
3 = 0.04




p4̄ ≡




p0
4 = 0.04

p1
4 = 0.04

p2
4 = 0.04

p3
4 = 0.04

p4
4 = 0.72

p5
4 = 0.04

p6
4 = 0.04

p7
4 = 0.04




p5̄ ≡




p0
5 = 0.04

p1
5 = 0.04

p2
5 = 0.04

p3
5 = 0.04

p4
5 = 0.04

p5
5 = 0.72

p6
5 = 0.04

p7
5 = 0.04




p6̄ ≡




p0
6 = 0.04

p1
6 = 0.04

p2
6 = 0.04

p3
6 = 0.04

p4
6 = 0.04

p5
6 = 0.04

p6
6 = 0.72

p7
6 = 0.04




p7̄ ≡




p0
7 = 0.04

p1
7 = 0.04

p2
7 = 0.04

p3
7 = 0.04

p4
7 = 0.04

p5
7 = 0.04

p6
7 = 0.04

p7
7 = 0.72




We will call the probabilities that populate the arrays fiducial measurements and
we will call the arrays of probabilities fiducial vectors5 [26].

For every state pī, i = 0, 1, . . . 7, listed above we have that p0
i + p1

i + p2
i + p3

i +
p4

i + p5
i + p6

i + p7
i = 1. This means that the probability of finding the register in

any one of the configurations from {000} through {111} is 1. States pī that have
this property are said to be normalized .

Given the collection of normalized states pī we can construct statistical ensembles
with other values for probabilities p0 through p7 by mixing states pī in various
proportions.

5The word fiducial in physics means an object or a system that is used as a standard of
reference or measurement. It derives from the Latin word fiducia, which means confidence or
reliance. Here we rely on the probability measurements in order to characterize the state of the
system.
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1.4 Mixtures and pure states

Suppose we have a very large number, N , of fluctuating registers affected by the
malady discussed in the previous section. Suppose that N0 of these have been put
in state p0̄ and the remaining N −N0 = N3 have been put in state p3̄.

Now let us place all N registers into a hat and mix them thoroughly. We can Mixing registers
in various statesdraw them from the hat at random and look at their configuration but only once

per register drawn. What probabilities should we expect for any possible register
configuration in this ensemble?

The easiest way to answer this question is to expand states p0̄ and p3̄ into their Making use of
statistical
ensembles

corresponding statistical ensembles and say that we have N0 ensembles that cor-
respond to state p0̄ and N3 ensembles that correspond to state p3̄. In each p0̄

ensemble we have n0
0 registers out of n0 in the {000} configuration and in each p3̄

ensemble we have n0
3 registers out of n3 in the {000} configuration. So the total

number of registers in the {000} configuration is

N0n
0
0 +N3n

0
3

The total number of registers after this expansion of states into ensembles is

N0n0 +N3n3

Therefore the probability of drawing a register in the {000} configuration is going
to be

N0n
0
0 +N3n

0
3

N0n0 +N3n3

in the limit N →∞, n0 →∞ and n3 →∞.
We can assume here, without any loss of generality, that we have an identical

number of registers in the ensembles for p0̄ and p3̄, i.e., that n0 = n3 = n. Then

N0n
0
0 +N3n

0
3

N0n0 +N3n3

=
N0n

0
0 +N3n

0
3

n (N0 +N3)

=
N0n

0
0 +N3n

0
3

nN

=
N0

N

n0
0

n
+
N3

N

n0
3

n

In the limit n→∞ and N →∞ this becomes:

P0p
0
0 + P3p

0
3
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where P0 is the probability of drawing a register in state p0̄, P3 is the probability
of drawing a register in state p3̄, p0

0 is the probability that a register in state p0̄ is
observed in configuration {000} and p0

3 is the probability that a register in state
p3̄ is observed in configuration {000}.

Now assume that P0 = 0.3 and that P3 = 0.7. At this level (of probabilities
pertaining to the mixture) we have that P0 + P3 = 1. What are the probabilities
for each configuration in the mixture?

p0 = P0p
0
0 + P3p

0
3 = 0.3 · 0.72 + 0.7 · 0.04 = 0.244

p1 = P0p
1
0 + P3p

1
3 = 0.3 · 0.04 + 0.7 · 0.04 = 0.04

p2 = P0p
2
0 + P3p

2
3 = 0.3 · 0.04 + 0.7 · 0.04 = 0.04

p3 = P0p
3
0 + P3p

3
3 = 0.3 · 0.04 + 0.7 · 0.72 = 0.516

p4 = P0p
4
0 + P3p

4
3 = 0.3 · 0.04 + 0.7 · 0.04 = 0.04

p5 = P0p
5
0 + P3p

5
3 = 0.3 · 0.04 + 0.7 · 0.04 = 0.04

p6 = P0p
6
0 + P3p

6
3 = 0.3 · 0.04 + 0.7 · 0.04 = 0.04

p7 = P0p
7
0 + P3p

7
3 = 0.3 · 0.04 + 0.7 · 0.04 = 0.04

Observe that all probabilities pi, i = 1, . . . , 7, still add to one.
Using symbol p for the array of probabilities p0 through p7 we can write theFiducial vector

and state for a
mixture

above as follows:
p = P0p0̄ + P3p3̄

In general, assuming that we use all possible states in the mixture, we would have:

p =
∑

i

Pipī (1.1)

i.e., the mixture state is a linear combination of its constituents. This linearity is
restricted by two conditions, namely that

∑
i Pi = 1 and ∀i 0 ≤ Pi ≤ 1. LinearityConvexity

so restricted is called convexity , but we are going to show in section 1.6 that it can
be extended to full linearity as long as what is on the left hand side of equation
(1.1) is still a physically meaningful state.

It is easy to see that
P

k pk = 1 for the mixture:

X

k

pk =
X

k

X
i

Pip
k

i =
X

i

Pi

X

k

pk
i =

=
X

i

Pi · 1 =
X

i

Pi = 1
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States p0̄ through p7̄ are mixtures too. For example, state p3̄, which is specifiedStates of
fluctuating
registers are
mixtures of
non-fluctuating
states

by the array:

p3̄ ≡




p0
3 = 0.04

p1
3 = 0.04

p2
3 = 0.04

p3
3 = 0.72

p4
3 = 0.04

p5
3 = 0.04

p6
3 = 0.04

p7
3 = 0.04




can be thought of as a mixture of, say, 1,000,000 non-fluctuating registers of which
720,000 are in the {011} configuration at all times, and the remaining 280,000
registers are evenly spread over the remaining configurations, with 40,000 registers
in each.

A register that is in a non-fluctuating {000} configuration can be still described Probabilistic
description of
non-fluctuating
registers

in terms of a column vector of probabilities as follows:



p0 = 1
p1 = 0
p2 = 0
p3 = 0
p4 = 0
p5 = 0
p6 = 0
p7 = 0




which states that the probability of finding this register in configuration {000} is 1,
or, in other words, that the register spends 100% of its time in this configuration.
We can use similar array representations for registers in non-fluctuating configura-
tions {001} through {111}. These states, however, cannot be constructed by mixing Pure states
other states, because probabilities cannot be negative, so there is no way that the
zeros can be generated in linear combinations of non-zero coefficients, all of which
represent some probabilities. States that are not mixtures are called pure. Only
for pure states | p〉 do we have that

∑

i

pi = 1 and
∑

i

(
pi

)2
= 1

whereas for mixtures ∑

i

(pi)
2
< 1
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It is easy to see why this should be so. For 0 < pi < 1 we have that 0 <`
pi
´2

< pi. From this it follows that for such pis 0 <
P

i

`
pi
´2

<
P

i pi = 1.

The equality
P

i

`
pi
´2

= 1 can therefore happen only if at least one pi = 1,

but since
P

i pi = 1 and none of the pis can be negative, in this case all other

pis must be zero.

Let us introduce the following notation for the pure states:Fiducial
representation
of pure states

e0 ≡




1
0
0
0
0
0
0
0




e1 ≡




0
1
0
0
0
0
0
0




e2 ≡




0
0
1
0
0
0
0
0




e3 ≡




0
0
0
1
0
0
0
0




e4 ≡




0
0
0
0
1
0
0
0




e5 ≡




0
0
0
0
0
1
0
0




e6 ≡




0
0
0
0
0
0
1
0




e7 ≡




0
0
0
0
0
0
0
1




This time we have dropped the bars above the digits to emphasize that these pure
states do not fluctuate and therefore the digits that represent them are exact and
do not represent averages or most often encountered configurations.

Consider a randomly fluctuating register state | p〉 specified by a vector of prob-The basis of
pure states abilities p. Using straightforward array arithmetic we can express the array p in

terms of ei as follows
p =

∑

i

piei



Bits and Registers 17

This expression is reminiscent of equation (1.1) on page 14, but here we have
replaced fluctuating states on the right hand side with non-fluctuating pure states.
And so, we have arrived at the following conclusion

Every randomly fluctuating classical register state is a mixture of pure
states.

The ability to decompose any randomly fluctuating register state p into a linear States of
randomly
fluctuating
registers belong
to a vector space

(to be exact, a convex) combination of other fluctuating or pure states suggests
that we can think of the fluctuating states as belonging to a vector space in which
the natural choice for the basis are the pure states6. But fluctuating states do not
fill the space entirely, because only vectors for which

∑

i

pi = 1 and ∀i 0 ≤ pi ≤ 1

are physical. Let us call the set of physically meaningful vectors in this space S.
Figure 1.4 shows set S for a 3-dimensional vector space that corresponds to a A set of

physically
meaningful
states

2-bit modulo-3 fluctuating register, i.e., a register, for which the {11} configuration
is unstable and flips the register back to {00}.

- e0

6

e1

ª
e2

0

Figure 1.4: The set S in the 3-dimensional vector space that corresponds to a 2-bit
modulo-3 fluctuating register is the gray triangle spanned by the ends of the three
basis vectors of the space.

6We are going to load the term basis with an additional meaning soon, but what we have just
called the basis states will remain such in the classical physics context even with this additional
loading put upon them.
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In this case S is the triangle spanned by the tips of the pure states

e0 ≡



1
0
0




e1 ≡



0
1
0




e2 ≡



0
0
1




It is possible to fill the space between the triangle in figure 1.4 and the zero of theThe null state
vector space by admitting the null state as a possible participant in the mixtures.
A 3-bit register null state, for which we are going to use symbol 0, corresponds to
the array of probabilities

0 ≡




0
0
0
0
0
0
0




The meaning of the null state is that a register in this state does not return any
reading at all: we can say that it’s broken, all its LEDs are off.

Consider the following mixture: 30% of the 3-bit registers are in the null
state 0, 40% of the 3-bit registers are in the e2 state and the remaining 30%
are in the e4 state. What are the coefficients pi of the mixture? Let us
expand the mixture into its statistical ensemble assuming for simplicity that
the total number of registers in the ensemble is 100. 40 registers will then be
in the {010} configuration and 30 registers will be in the {100} configuration.
The remaining 30 registers will be in no readable configuration at all. The
probability of drawing a register in the {010} configuration from the ensemble
is therefore p2 = 40/100 = 0.4. The probability of drawing a register in the
{100} configuration from the ensemble is p4 = 30/100 = 0.3. The probability
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of drawing a register in any other configuration is 0. The resulting state of
the register is therefore

p ≡

0
BBBBBBBBBB@

p0 = 0.0
p1 = 0.0
p2 = 0.4
p3 = 0.0
p4 = 0.3
p5 = 0.0
p6 = 0.0
p7 = 0.0

1
CCCCCCCCCCA

The sum of all pis is now equal 0.7, which is less than 1.

A state vector for which
P

i pi < 1 is said to be unnormalized as opposed Normalized and
unnormalized
states

to a state vector for which
P

i pi = 1, which, as we have already remarked,

is said to be normalized . The addition of the null state 0 to the mixture

has the effect of “diluting” it. Because every unnormalized state vector must

have some admixture of the null state, it is clear that all unnormalized states Diluted mixtures
are mixtures. And conversely, states that are not mixtures and that are not

null either, i.e., pure states must be normalized. And then we also have the

body of states that are not pure, but are not diluted either: these states are

normalized and they are mixtures too.

If null states are allowed then the corresponding set S is no longer restricted to
the surface of the triangle shown in figure 1.4. Instead the states fill the whole
volume of the tetrahedron between the triangle and the zero of the vector space,
including both the zero and the triangle.

The pure states and the null state are the extremal points of S. This observation Pure states as
extremal points
of S

lets us arrive at the following definition of pure states:

Pure states correspond to extremal points of S − {0}.
This definition will come handy in more complex situations and in richer theories,
in which we may not be able to draw a simple picture, or recognize that a given
state is pure by merely looking at its corresponding column of probabilities.

1.5 Basis states

In section 1.4 we stated that pure states were the natural choice for the basis of
the vector space in which physical states of fluctuating registers filled set S. This
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assertion was based on the elementary algebra, which we used to decompose an
arbitrary mixture into a linear combination of pure states:

p =
7∑

i=0

piei

This decomposition, in turn, was based on the representation of pure states by
arrays of zeros and ones – arrays, which in the world of elementary algebra are
commonly associated with basis vectors.

Here we are going to give a quite special physical meaning to what we are goingThe
“momentary
glance”
definition of a
basis state

to call the basis state throughout the remainder of this book and to what is also
called the basis state in quantum mechanics.

A basis state is the configuration of a randomly fluctuating register that
can be ascertained by glancing at it momentarily.

If we have a fluctuating register and glance at it momentarily we are not going toPhysical and
canonical basis
states

see it fluctuate. Instead, we are going to see this register in a quite specific frozen
(albeit momentarily only) configuration, for example, {010}. If we glance at this
register again a while later, the register may be in the {101} configuration7. We are
going to call the non-fluctuating states that correspond to these configurations, i.e.,
e2 and e5, the (physical) basis states. Altogether we are going to have eight such
basis states for the classical 3-bit randomly fluctuating register, assuming that all
bits are allowed to fluctuate freely. The basis states, as defined here, are e0 through
e7, which is what we have also called pure states, and what is also a canonical basis
in the fiducial vector space.

We are going to use a special notation for such momentarily glanced basis vectors
to distinguish between them and the canonical basis. Borrowing from the traditions
of quantum mechanics, we’ll denote them by | e0〉 through | e7〉.

The number of vectors in the physical basis of the classical randomly fluctuatingDimensionality
and degrees of
freedom

register, this number is also called the dimensionality of the system, is the same
as the number of probabilities that are needed to describe the state. The number
of probabilities is also called the number of degrees of freedom of the system. This
follows clearly from how the probabilities have been defined: they are probabilities
of finding the register in one of its specific configurations, which here we have
identified with the basis states, because it is only these configurations (and not the
fluctuating states) that we can actually see when we give the register a brief glance.

7Here again we make the assumption that glancing at the register does not affect its state.
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Denoting the dimensionality of the system by N and the numbers of degrees of
freedom by K, we can state that for the classical randomly fluctuating register

K = N (1.2)

Why should we distinguish at all between canonical and physical basis, especially
since they appear to be exactly the same for the case considered so far? The answer
is that they will not be the same in the quantum register case. What more, we will
find there that

K = N2 (1.3)

An astute reader may be tempted to ask the following question: what What to do with
transitional
configurations

if I happen to catch the register in one of its unstable states it goes through
when it glides between the configurations described by symbols {000} through
{111}? Such a configuration does not correspond to any of the “basis vectors”
we have defined in this section.

This is indeed the case. Our probabilistic description does not cover the
configurations of the continuum through which the register glides between its
basis states at all. Instead we have focused entirely on the stable discrete
configurations.

One of the ways to deal with the problem is to define more precisely
what we mean by “momentarily”. Assuming that the transition between What do we

mean by
“momentarily”

the stable configurations of the register, the gliding phase, lasts δt we want
“momentarily” to be much longer than δt. But “momentarily” must not be
too long, because then we’ll see the register switch during observation. If
the register stays in any given configuration for ∆t on average, then we want
“momentarily” to be much shorter than ∆t. And so we arrive at a somewhat
more precise definition of “momentarily”:

δt¿ “momentarily”¿ ∆t

We will see that this problem is not limited to classical registers. There is
a similar condition imposed on quantum observations, although the dynamics
of quantum observations is quite different. But it still takes a certain amount
of time and effort to force a quantum system into its basis state. If the act
of observation is too lightweight and too fast the quantum system will not
“collapse” to the basis state and the measurement will be incomplete.

Another quite different way to deal with the problem is to include the con- How to include
transitional
states in the
model

tinuum of configurations the register glides through between its stable states
into the model, and allow register configurations such as {0.76 0.34 0.18}. We
would then have to add probabilities (or probability densities) of finding the
register in such a state to our measurements and our theory. The number of
dimensions of the system would then skyrocket, but this does not necessarily
imply that the system would become intractable.
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This solution also has its equivalent in the world of quantum physics.

Detailed investigations of the spectrum of hydrogen atom revealed that its

spectral fringes were split into very fine structure, and that additional splitting

occurred in presence of electric and magnetic fields. To account for every

observed feature of the spectrum physicists had to significantly enlarge the

initially simple theory of hydrogen atom so as to incorporate various quantum

electrodynamic corrections.

1.6 Functions and measurements on mixtures

How can we define a function on a randomly fluctuating register state?
There are various ways to do this. For example, we could associate certain values,

fi ∈ R, with specific configurations of the register, i.e., {000}, . . . , {111}, and then
we could associate average of fi over the statistical ensemble that corresponds to
p with f (p). This is a very physical way of doing things, since all that we can seeFunctions on

states as
averages over
the ensembles

as we glance at the fluctuating register every now and then are its various basis
states, i.e., momentarily frozen configurations. If every one of these configurations
is associated with some value fi, what we’re going to perceive in terms of fi over a
longer time, as the register keeps fluctuating, is an average value of fi.

Another way to define a function f on a fluctuating register state would be toArbitrary
functions on
states

construct an arbitrary mapping of the form

S 3 p 7→ f
(
p0, p1, p2, p3, p4, p5, p6, p7

) ∈ R

where R stands for real numbers.
This second way is very general and it could be used to define quite complicated

non-linear functions on coefficients pi, for example:

S 3 p 7→ (
p0

)2
+ p1p3 − sin

(
p2p3p4

)
+ ep5p6p7 ∈ R

A function like this could be implemented by an electronic procedure. For example,
the procedure could observe the register for some time collecting statistics and
building a fiducial vector for it. Once the vector is sufficiently well defined, the
above operation would be performed on its content and the value of f delivered on
output. Knowing value of f on the basis states would not in general help us evaluate
f on an arbitrary state p. Similarly, knowing values of f on the components of a
mixture would not in general help us evaluate f on the mixture itself. In every case
we would have to carry out full fiducial measurements for the whole mixture and
then only evaluate the function.
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On the other hand, the strategy outlined at the beginning of the section leads to
functions which have very nice and simple properties and which also cover a very
important special case: that of the fiducial vector of the mixture itself.

Consider a register that has a tiny tunable laser linked to its circuitry and the
coupling between the laser and the configuration of the register is such that when
the register is in configuration {000} the laser emits red light, when the register is
in configuration {111} the laser emits blue light and when the register is in any of
the intermediate configurations the laser emits light of some color that is between
red and blue. Let the frequency of light emitted by the laser when the register is in
state ei (which corresponds directly to a specific configuration) be fi. Let us then
define the frequency function f on the basis states8 as follows

f (ei)
.= fi

We are going to extend this definition to an arbitrary mixture

p =
∑

i

piei

by calculating the average value of fi over the ensemble that corresponds to state
p. Let us call this average value f̄ and let us use the arithmetic mean formula to Arithmetic

mean average
over the
ensemble

calculate it. If the ensemble comprises n registers then np0 registers are in state e0,
np1 registers are in state e1, . . ., and np7 registers are in state e7. The arithmetic
mean of fi over the ensemble is:

f̄ =
1
n

(
np0f0 + np1f1 + · · ·+ np7f7

)

=
n

n

7∑

i=0

pifi =
∑

i

pifi

=
∑

i

pif (ei)

We can define that f (p) .= f̄ , which yields the following formula:

f (p) = f

(∑

i

piei

)
=

∑

i

pif (ei)

8These are, in fact, physical basis states, because we want to associate the definition with
register configurations that can be observed by glancing at the register momentarily. So we
should really write here | ei〉. But recall that for the classical register they are really the same, so
we’ll avoid a great deal of notational complexity by using the canonical basis instead.
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Now let us take two arbitrary states9

p1 =
∑

i

pi
1ei and p2 =

∑

i

pi
2ei

and evaluate f on a mixture of these:

f (P1p1 + P2p2) = f

(
P1

∑

i

pi
1ei + P2

∑

i

pi
2ei〉

)

= f

(∑

i

(
P1p

i
1 + P2p

i
2

)
ei

)
=

∑

i

(
P1p

i
1 + P2p

i
2

)
f (ei)

= P1

∑

i

pi
1f (ei) + P2

∑

i

pi
2f (ei)

= P1f

(∑

i

pi
1ei

)
+ P2f

(∑

i

pi
2ei

)

= P1f (p1) + P2f (p2)

In summary
f (P1p1 + P2p2) = P1f (p1) + P2f (p2) (1.4)

i.e., we find that f is convex on mixtures, or, in other words, it is linear on ex-Convexity of
arithmetic mean
on mixtures

pressions of the form P1p1 + P2p2 where p1 and p2 belong to S, 0 ≤ P1 ≤ 1 and
0 ≤ P2 ≤ 1 and P1 + P2 = 1.

We can extend the definition of f to diluted mixtures by adding the following
condition:

f (0) = 0

Returning to our model where fi is a frequency of light emitted by a tunable laser
linked to a register configuration that corresponds to state ei, f (p) is the average
frequency of light emitted by the laser as the register in state p fluctuates randomly
through various configurations. Note that this average frequency may be different
from all frequencies fi that are actually observed. Frequency of light emitted by a
broken register, f (0), is zero, i.e., in this case the laser does not emit anything.

As we have already remarked, a very important class of functions that belongProbability as a
convex function
on mixtures

in this category are the probabilities associated with the mixture itself. Recall
equation (1.1) on page 14, which we are going to rewrite here as follows:

p = P1p1 + P2p2

9These are no longer the same states as our previously defined states p1̄ and p2̄: the bars
above the subscripts are absent. They are simply two general mixture states.
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Define a function on p that returns the i-th probability pi. Let us call this function
ωi. Using this function and the above equation for the probability of a mixture we
can write the following expression for pi:

pi = ωi (p) = P1ω
i (p1) + P2ω

i (p2) = P1p
i
1 + P2p

i
2

If states p1 and p2 happen to be the canonical basis states, and if we have all of
them in the mixture, we get

pi = ωi (p) = ωi

(∑

k

pkek

)
=

∑

k

pkωi (ek)

For this to make sense we must have that

ωi (ek) = δi
k

where δi
k = 0 for i 6= k and δi

k = 1 for i = k. Kronecker delta
Interpreting ωi as an average value of something over the statistical ensemble

that corresponds to p, we can say that pi = ωi (p) is the average frequency with
which the basis state ei is observed as we keep an eye on the randomly fluctuating
register, e.g., 30 times out of 100 (on average) for pi = 30%.

The linear combinations of various states discussed so far were always restricted
by the conditions

∀i 0 ≤ pi ≤ 1 and
∑

i

pi = 1

or in case of diluted states 0 ≤ ∑
i p

i < 1. When we observed the linearity of
function f defined as the arithmetic mean over statistical ensembles corresponding
to states p, it was also restricted to coefficients pi or Pi (for mixtures of mixtures)
satisfying the same conditions. So this partial linearity, the convexity , is not a
full linearity, which should work also for pi > 1 and for pi < 0 – unless we can
demonstrate that the former implies the latter.

So here we are going to demonstrate just this10, i.e., that a function f Convexity
implies linearitydefined as above, which has the property that

f (P1p1 + P2p2) = P1f (p1) + P2f (p2) (1.5)

where
0 ≤ P1 ≤ 1 and 0 ≤ P2 ≤ 1 and P1 + P2 = 1

10This proof follows [26] with some minor alterations.
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is fully linear on S, i.e.,

f

 X
i

aipi

!
=
X

i

aif (pi) (1.6)

where
pi ∈ S and

X
i

aipi ∈ S and ai ∈ R

i.e., ai can be greater than 1 and they can be negative too.
Since we allow for the presence of the null state 0, assume that p2 = 0.

The probability array (the fiducial vector) for 0 comprises zeros only and
f (0) = 0, hence equation (1.5) implies that in this case

f (P1p1) = P1f (p1) (1.7)

Now replace P1 with 1/ν and P1p1 with p:

f (p) =
1

ν
f (νp)

or
νf (p) = f (νp) (1.8)

Observe that in this new equation state p is unnormalized (or diluted) and
1 < ν. Combining equations (1.7) and (1.8) yields

f (ap) = af (p) (1.9)

for 0 ≤ a (including 1 < a) and as long as ap ∈ S, since otherwise the
expression lacks physical meaning. But we can extend this expression beyond
S from a purely algebraic point of view and this will come handy below.

Now let us consider an arbitrary linear combination of states that still
delivers a state in S:

p =
X

i

aipi

where, as above, we no longer restrict ai: they can be negative and/or greater
than 1 too. Let us divide coefficients ai into negative and positive ones. Let
us call the list of indexes i that yield ai < 0 A− and the list of indexes i that
yield ai > 0 A+. This lets us rewrite the equation above as follows:

p +
X

i∈A−

|ai|pi =
X

i∈A+

aipi (1.10)

Define
ν = 1 +

X
i∈A−

|ai|
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and let us divide both sides of equation (1.10) by ν:

1

ν
p +

X
i∈A−

|ai|
ν

pi =
X

i∈A+

ai

ν
pi (1.11)

Observe that all coefficients on the left hand side of the equation, i.e.,

1

ν
,
|ai|
ν

for i ∈ A−

are positive and add up to 1 (because we have defined ν so that they would
add up to 1). Now define

µ =
X

i∈A+

ai

ν

Using µ we can additionally rewrite equation (1.11) as follows:

1

ν
| p〉+

X
i∈A−

|ai|
ν
| pi〉 = µ

X
i∈A+

ai

µν
| pi〉

Observe that all coefficients on the right hand side of this equation, i.e.,

ai

µν
for i ∈ A+

are positive and add up to 1 (because we have defined µ so that they would
add up to 1). We can now apply function f to both sides of this equation. Let
us begin with the left hand side. Here we have a regular mixture, therefore:

f

0
@ 1

ν
p +

X
i∈A−

|ai|
ν

pi

1
A =

1

ν
f (p) +

X
i∈A−

|ai|
ν

f (pi)

On the right hand side we first make use of equation (1.9) on page 26:

f

0
@µ

X
i∈A+

ai

µν
pi

1
A = µf

0
@X

i∈A+

ai

µν
pi

1
A = · · ·

and now we simply make use of the fact that what f acts on is a regular
mixture and so:

· · · = µ
X

i∈A+

ai

µν
f (pi)

Combining both sides yields:

1

ν
f (p) +

X
i∈A−

|ai|
ν

f (pi) = µ
X

i∈A+

ai

µν
f (pi)
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Let us finally multiply both sides of the equation by ν and let us cancel µ/µ
on the right hand side to get:

f (p) +
X

i∈A−

|ai|f (pi) =
X

i∈A+

aif (pi)

which is the same as
f (p) =

X
i

aif (pi)

in other words, f is, this time, fully linear on S.

The arithmetic mean is not the only way in which function f can be extendedBeyond
arithmetic mean from its definition on the basis states ei to an arbitrary mixture p. Instead of using

arithmetic mean, 〈f ,p〉, we could also use the generalized mean, which is defined
by the formula:

f̄t =

(∑

i

pi (fi)
t

)1/t

The generalized mean f̄t becomes arithmetic mean for t = 1. It also becomes
harmonic mean for t = −1 and geometric mean for t→ 0. For very large values of
t f̄t ≈ maxi fi and for very large negative values of t f̄t ≈ mini fi.

There may indeed be situations in electronics and physics when, e.g., harmonic
mean or geometric mean are more appropriate ways of extending f to the mix-
ture. But f so defined would not be linear and therefore would not mix in direct
proportion to the abundance of various components in the mixture.

1.7 Forms and Vectors

Linear functions on a vector space are called forms. Such functions can be thought
of as mirror images of vectors they operate on11 and they form a vector space of
their own too.

Whenever a form f , which represents a measurement on a mixture, encounters a
vector p, which represents a mixture, they get together in an explosive union 〈f ,p〉
which delivers a number f (p):

〈f ,p〉 .= f (p)

11A great and quite painless introduction to vectors, forms and tensors can be found in [39],
Part II, “Physics in Flat Spacetime”, sections 2 and 3.
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Using this notation we can restate the linearity of function f , equation (1.6), as
follows:

〈f ,
∑

i

aipi〉 =
∑

i

ai〈f ,pi〉

In practical computations we often identify a state vector p with a column of num-
bers (probabilities), although much can be said and even proven about state vectors
without using this particular representation. Similarly, a form f can be identified
with a row of numbers. For example, a form that returns the first component of a
vector would have the following row-of-numbers representation:

ω0 ≡ (1, 0, 0, 0, 0, 0, 0, 0)

When a form like this is attached to a vector p the following results:

〈ω0,p〉 = (1, 0, 0, 0, 0, 0, 0, 0) ·




p0

p1

p2

p3

p4

p5

p6

p7




= p0

where the dot between the row and the column stands for matrix multiplication.
This form represents a measurement of probability that the system is in configura-
tion {000}.

The following listing introduces a canonical basis in the space of forms:

ω0 ≡ (1, 0, 0, 0, 0, 0, 0, 0)

ω1 ≡ (0, 1, 0, 0, 0, 0, 0, 0)

ω2 ≡ (0, 0, 1, 0, 0, 0, 0, 0)

ω3 ≡ (0, 0, 0, 1, 0, 0, 0, 0)

ω4 ≡ (0, 0, 0, 0, 1, 0, 0, 0)

ω5 ≡ (0, 0, 0, 0, 0, 1, 0, 0)

ω6 ≡ (0, 0, 0, 0, 0, 0, 1, 0)

ω7 ≡ (0, 0, 0, 0, 0, 0, 0, 1)

As we did with columns of probabilities, we shall call the rows and symbols such Fiducial forms
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as ωi fiducial forms or fiducial measurements, because they act on fiducial vectors.
The basis forms ωi satisfy the following relation:

〈ωi, ej〉 = δi
j

As we can express a mixture p in terms of the basis states

p =
∑

i

piei

a form f can be expressed in terms of the basis forms ωi defined above as follows:

f =
∑

i

fiω
i

The action of f on p now becomes:

〈f ,p〉 =

〈∑

i

fiω
i,

∑

j

pjej

〉

=
∑

i

∑

j

fip
j〈ωi, ej〉 =

∑

i

∑

j

fip
jδi

j

=
∑

i

fip
i

The physical meaning of 〈f ,p〉 is the arithmetic mean of fi over the statistical
ensemble represented by the mixture coefficients pi, where fi are the values f

assumes on the basis states ei.

Observe the following typographic convention. Vectors and forms areAbout subscripts
and superscripts typeset using bold font, whereas vector and form coefficients are typeset using

light font. Whenever possible we will reserve small Latin letters, e.g., v, e, for
vectors and small Greek letters, e.g., η, ω, for forms – though sometimes, as we
have just done with form f , we will break this convention. Basis vectors, e.g.,
ei are numbered with subscripts. Basis forms, e.g., ωi are numbered with
superscripts. On the other hand, vector coefficients, e.g., pi are numbered
with superscripts and form coefficients, e.g., fi are numbered with subscripts.
This way whenever there is a summation in expressions such as:

p =
X

i

piei

f =
X

i

fiω
i

〈f , p〉 =
X

i

fip
i
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the summation runs over indexes of which one is always down and the other
one is always up. Such summation is called contraction. One says, for exam-
ple, about contraction on index i.

This convention is very useful, because it constantly reminds us about
what various objects we work with actually are. It helps debug form and
vector expressions too. For example, an expression such as

P
i fiei should

attract our suspicions, because it suggests that we are trying to use form
coefficients in order to construct a vector.

This typographic convention leads to the so called summation convention, Summation
conventionwhich states that whenever there is an expression with two identical indexes,

of which one is up and the other one down, summation should be assumed.
For example

fip
i ≡

X
i

fip
i

piei ≡
X

i

piei

fiω
i ≡

X
i

fiω
i

The summation convention is very handy in tensor calculus, where geometric
and dynamic objects may be endowed with several subscripts and super-
scripts. We will not make much use of it though, and will always state so
explicitly, when we do.

The placement of indexes on form and vector coefficients is not just a Vector and form
transformation
properties

matter of esthetics, convenience and debugging. It reflects transformation
properties of these objects too.

Suppose that instead of decomposing vector v in basis ei, v =
P

i viei,
we were to decompose it in another basis, say, ei′ . Basis vectors ei′ are not
the same as ei, the prime on the index i′ matters, but they are all linearly
independent as basis vectors should be. Suppose also that we find another
basis in the form space, ωi′ such that 〈ωi′ , ej′〉 = δi′

j′ . Vector coefficients in
the new basis ei′ can be found by using the basis in the form space, namely

vi′ = 〈ωi′ , v〉
Since both ei and ei′ are the bases of linearly independent vectors, there

must be a linear transformation that converts one basis into another one. Let
us call the coefficients of this transformation Λi′

j . The transformation rule
for the basis vectors is then:

ei′ =
X

j

Λi′
jej

We should expect a similar transformation for the forms

ωi′ =
X

j

ωjΛj
i′
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We do not assume that Λi′
j and Λj

i′ are the same: the typographic placement
of primed and unprimed indexes warns us that they may be different. But
they are related. This is easy to see by invoking the rules 〈ωi, ej〉 = δi

j and

〈ωi′ , ej′〉 = δi′
j′ :

δi′
j′ = 〈ωi′ , ej′〉 =

*X

k

ωkΛk
i′ ,
X

l

Λj′
lel

+

=
X

k

X

l

Λk
i′Λj′

l〈ωk, el〉 =
X

k

X

l

Λk
i′Λj′

lδk
l

=
X

k

Λk
i′Λj′

k

This tells us that matrices
‚‚‚Λk

i′
‚‚‚ and

‚‚Λj′
k
‚‚ are inverses of each other.

Now we can turn back to transformation properties of vector and form
coefficients. We can easily see that for vectors we have the following:

vi′ =
D
ωi′ , v

E
=

*X
j

ωjΛj
i′ , v

+

=
X

j

Λj
i′
D
ωj , v

E
=
X

j

vjΛj
i′

On the other hand, we get a different relation for forms:

ηi′ = 〈η, ei′〉 =

*
η,
X

j

Λi′
jej

+

=
X

j

Λi′
j 〈η, ej〉 =

X
j

Λi′
jηj

We see that form and vector coefficients transform in opposite directions.

Vector coefficients (index is up) transform like form basis (their index is up

too) and form coefficients (index down) transform like vector basis (their index

is down too). This is actually very good, because this means that expressions

such as
P

i ηiv
i don’t transform at all. Transformations of ηi and vi cancel

each other, so that the resulting scalar 〈η, v〉 is independent of the choice of

vector and form bases.

1.8 Transformations of mixtures

Suppose we have a hat full of randomly mixed 3-bit registers in various static config-
urations. Such a statistical ensemble is equivalent to a single randomly fluctuating
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register in some state p. If there is a total of N registers in the hat, the abundances
of registers in specific configurations are Np0, Np1, . . . , Np7.

Let us now call a local Cinderella, there is always bound to be one in a nearby Cinderella
transformationopera house, and let us give her the following ungrateful task. She should draw

the registers out of the hat one by one. Whenever she draws a register in state
e0 she should tweak its toggles so as to change its state to p0 and then place it in
another hat. Whenever she draws a register in state e1 she should tweak it so as
to change its state to p1 and then place it in the other hat too, and so on for the
remaining states. In other words, she should perform the following transformation
on the whole ensemble:

e0 → p0

e1 → p1

e2 → p2

e3 → p3

e4 → p4

e5 → p5

e6 → p6

e7 → p7

where pi =
∑

j p
j
iej .

What Cinderella is going to end up with in the second hat, after the whole
operation is finished, is another mixture. Let us now draw a register from the second
hat, this time it is going to be a fluctuating one, and glance at it momentarily. What
are the probabilities of seeing e0, e1, . . . , e7?

To answer this question we shall expand, as we did on previous occasions, states
p0 through p7 into their statistical ensembles, remembering that we are going to
have

Np0 ensembles that correspond to p0

Np1 ensembles that correspond to p1

Np2 ensembles that correspond to p2

Np3 ensembles that correspond to p3

Np4 ensembles that correspond to p4

Np5 ensembles that correspond to p5

Np6 ensembles that correspond to p6
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Np7 ensembles that correspond to p7

Without loss of generality we can assume that each ensemble that corresponds to
p0 through p7 comprises the same number of non-fluctuating registers. Let’s call
this number n. Consequently, in an ensemble that corresponds to p0 we are going
to have

np0
0 registers in state e0

np1
0 registers in state e1

np2
0 registers in state e2

np3
0 registers in state e3

np4
0 registers in state e4

np5
0 registers in state e5

np6
0 registers in state e6

np7
0 registers in state e7

and similarly for the other ensembles. The total number of registers in state e0 in
all the ensembles is going to be:

Np0np0
0 +Np1np0

1 +Np2np0
2 +Np3np0

3

+Np4np0
4 +Np5np0

5 +Np6np0
6 +Np7np0

7

= Nn

7∑

i=0

pip0
i

The total number of all registers in all the ensembles is going to be Nn, because
we had N registers in the first hat and after tweaking the toggles each register
got “expanded” into an ensemble of n registers. Let the state of the mixture in
the second hat be called q with coefficients q0, q1, . . . , q7. Making use of the above
formula we have for q0:

q0 =
1
Nn

Nn

7∑

i=0

pip0
i =

7∑

i=0

p0
ip

i

We have reversed here the order of pi and p0i for a purely cosmetic reason. Similarly
we can write the following equations for the remaining coefficients:

q1 =
7∑

i=0

p1
ip

i q2 =
7∑

i=0

p2
ip

i q3 =
7∑

i=0

p3
ip

i
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q4 =
7∑

i=0

p4
ip

i q5 =
7∑

i=0

p5
ip

i q6 =
7∑

i=0

p6
ip

i

q7 =
7∑

i=0

p7
ip

i

All of this can be written more concisely as follows:

qj =
∑

i

pj
ip

i

We can also rewrite this formula using vector and form notation:

q =
∑

j

qjej =
∑

j

∑

i

pj
iejp

i =
∑

j

∑

i

pj
iej〈ωi,p〉

=

〈∑

j

∑

i

pj
iej ⊗ ωi,p

〉
= 〈P ,p〉

where we have defined
P

.=
∑

j

∑

i

pj
iej ⊗ ωi

The symbol ⊗ is called a tensor product and all that it means here is that we put Tensor product
ej and ωi together next to each other typographically . If form ωi finds a vector to
prey on, e.g., p, it vanishes together with it leaving a number 〈ωi,p〉 behind and
all that is left on the paper then is ej multiplied by that number.

Symbol P denotes an operator that describes the transformation of the ensemble
performed by Cinderella. Observe that every j-th term of this operator,

∑
i p

j
iω

i

is a form. The operator can therefore be thought of as eight forms arranged so
that they together transform one state vector, p, into another one, q. Each of the
forms is a convex function, but, as we have already seen, it is also fully linear on
S. Consequently P , the collection of the forms, is linear too.

We will usually adhere throughout this text to the typographic convention
which uses capital bold letters, like P , for operators and other complex objects Typographic

conventions
pertaining to
operators

that have one or more tensor products inside them, although we will deviate
from it in some cases, where tradition dictates that, e.g., a metric tensor
should be denoted by g.

Another typographic convention drops brackets 〈 and 〉 when describing

the action of an operator on a vector. And so, instead of writing 〈P , p〉 we can

write simply Pp. This has the additional benefit of translating naturally into

a matrix (representing the P ) times a column (representing the p) expression.
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Although every Cinderella transformation like the one discussed here is going
to be linear, not every linear transformation that we can apply to S is going toConvexity of

Cinderella
transformations

be a valid Cinderella transformation. Rotations and reflections, for example, are
linear, but here they would rotate or reflect some of the states out of S. Cinderella
transformations on the other hand keep everything within S because of the following
three conditions, which, all together, imply convexity of P :

∀ji0 ≤ pj
i ≤ 1

∀j

∑

i

pj
i = 1

∀i

∑

j

pj
i = 1

Can Cinderella transformations be reversed? There is a very interesting answerReversibility of
Cinderella
transformations

to this question: the only reversible Cinderella transformations are permutations
on pure states, i.e., if a reversible Cinderella transformation is applied to a pure
state, another pure state must come out on output. Since reversibility also implies
that no two different pure states may be converted to the same output state, the
only possibility we are left with is a permutation of pure states.

The way to see that a reversible Cinderella transformation must convert a pure
state into another pure state is as follows. Let the transformation in question be
called C. If it is possible for C to convert a pure state to a mixture then we would
have that:

Cei =
∑

k

ckek

Since C is reversible, C−1 exists and we can apply it to both sides of the equation
above:

C−1Cei = ei =
∑

k

ckC−1ek

But this says that ei is a mixture12, which it is not. Hence we must conclude that
C cannot convert ek to a mixture.

We can always think of a quite general transformation on a mixture de-Beyond linearity
fined by the following formula:

q =
X

i

qi `p0, p1, . . . , p7´ ei

12Note that C−1ek must be linearly independent states because otherwise C wouldn’t be re-
versible.
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where qi
`
p0, p1, . . . , p7

´
are some arbitrary, possibly nonlinear, real-valued

functions that convert coefficients pi, i = 0, 1, . . . , 7 into real numbers between
0 and 1. The only additional condition we would impose on functions qi would
be that

∀p∈S

X
i

qi (p) ≤ 1

where the ≤ 1 condition would cover the option of generating diluted mix-
tures. How could we implement such a general transformation? It would not Nonlinear

transformations
cannot be
implemented
without the full
knowledge of the
state

be sufficient to provide Cinderella with a prescription such as before – this, as
we have seen, would result in a linear transformation. In order to generate q
Cinderella would have to empty the first hat entirely, counting abundances for
each configuration. Then only, having collected sufficient fiducial statistics to
ascertain the state of the whole mixture p, she could sit down and calculate
qi for i = 0, 1, . . . , 7. Having done this she could then set switches on each
register to generate q and only then she would place the register in the second
hat.

This transformation would be quite different physically from a Cinderella

transformation. A Cinderella transformation can be implemented on the go:

we don’t have to have the complete knowledge of the mixture in order to

begin processing the registers. The prescription allows us to perform the

transformation on each register separately and things will still add up to

q = Pp.

1.9 Composite systems

In this section we are going to have a closer look at what happens when we combine
smaller randomly fluctuating registers into a larger one.

Consider two 2-bit randomly fluctuating registers. A 2-bit randomly fluctuating
register is described by states that belong to the 22 = 4 dimensional vector space.
The canonical basis vectors in this space are e0 ≡ {00}, e1 ≡ {01}, e2 ≡ {10} and
e3 ≡ {11}. A vector space that contains the register obtained by combining the
two 2-bit registers is 4 × 4 = 16 dimensional. Let us call the two 2-bit registers A
and B and let us label the basis states that refer to these two registers with indexes
A and B too. And so we have the following basis states for register A:

{00}A, {01}A, {10}A, {11}A

and similarly for register B:

{00}B , {01}B , {10}B , {11}B
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What will the basis states look like of a system made by placing registers A and
B next to each other, so that they form a 4-bit register? Since we are not going to
do anything special to these two registers, other than just place them next to each
other, whenever we give them a brief glance as they keep fluctuating, we’re going
to see one of the following:Basis of the

combined
register system {00}A{00}B {00}A{01}B

{00}A{10}B {00}A{11}B
{01}A{00}B {01}A{01}B
{01}A{10}B {01}A{11}B
{10}A{00}B {10}A{01}B
{10}A{10}B {10}A{11}B
{11}A{00}B {11}A{01}B
{11}A{10}B {11}A{11}B

And so these pairs must be then the basis state vectors of the combined system.
We can replace binary digits in the curly brackets with our symbolic notation for
basis vectors as follows

{01}A{10}B → e1Ae2B

where we have simply placed e1A and e2B next to each other on the sheet of paper.
But we have already seen something very similar when we defined an operator in
terms of the tensor product ⊗. So just to avoid a possible confusion and emphasize
that we do not really multiply these vectors by each other but merely write then
next to each other, let us use the same symbol here:

{01}A{10}B → e1A ⊗ e2B

The basis of the combined register system now becomes:

e0A ⊗ e0B e0A ⊗ e1B

e0A ⊗ e2B e0A ⊗ e3B

e1A ⊗ e0B e1A ⊗ e1B

e1A ⊗ e2B e1A ⊗ e3B

e2A ⊗ e0B e2A ⊗ e1B

e2A ⊗ e2B e2A ⊗ e3B

e3A ⊗ e0B e3A ⊗ e1B

e3A ⊗ e2B e3A ⊗ e3B
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Using the pairs we can construct various mixtures in the same way we did it with
a single register. For example, we could take 30% of e1A⊗ e3B , 25% of e3A⊗ e0B , Mixing

combined
register systems

25% of e2A ⊗ e1B and 20% of e0A ⊗ e2B :

p = 0.3 e1A ⊗ e3B + 0.25 e3A ⊗ e0B

+ 0.25 e2A ⊗ e1B + 0.2 e0A ⊗ e2B

and this mixture would still leave 12 other basis states unused.
If ωA is a form (or a measurement) that acts on states of register A and ηB Forms on

combined
register states

is a form (or a measurement) that acts on states of register B, then the two can
be combined into a form ωA ⊗ ηB that acts on states of the combined register as
shown in the following example:

〈ωA ⊗ ηB ,p〉
= 〈ωA ⊗ ηB , 0.3 e1A ⊗ e3B + 0.25 e3A ⊗ e0B

+ 0.25 e2A ⊗ e1B + 0.2 e0A ⊗ e2B〉
= 0.3〈ωA ⊗ ηB , e1A ⊗ e3B〉+ 0.25〈ωA ⊗ ηB , e3A ⊗ e0B〉

+ 0.25〈ωA ⊗ ηB , e2A ⊗ e1B〉+ 0.2〈ωA ⊗ ηB ,e0A ⊗ e2B〉
= . . .

Now we proceed exactly as we did in the definition of the operator. Let us first
unite A forms with A vectors. This will produce numbers that will get thrown out
in front of the 〈 and 〉 brackets leaving B forms and B vectors to do the same. So
in final account we shall get

. . . = 0.3〈ωA, e1A〉〈ηB , e3B〉+ 0.25〈ωA, e3A〉〈ηB , e0B〉
+ 0.25〈ωA,e2A〉〈ηB , e1B〉+ 0.2〈ωA,e0A〉〈ηB , e2B〉

A function so defined is clearly linear on states p ∈ R16 and so it can be inter-
preted as arithmetic mean average over the statistical ensemble that corresponds
to p.

Because under the action of ωA⊗ηB a pair such as e0A⊗e3B gets converted into A formal (or
tensor) product
of register states

a product of two reals, 〈ωA, e0A〉〈ηB , e3B〉, one can think of the tensor product ⊗
as a product in waiting .

Another way to think of a tensor product is as a logical and . Instead of saying
that we have observed the pair of registers A and B in state

e0A ⊗ e3B
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we can say that we have observed the pair in state:

e0A and e3B



2 The Qubit

$Id: chapter.tex,v 1.5 2006/08/29 17:05:17 gustav Exp $

2.1 The ugly quanta

Macroscopic matter, i.e., things that surround us in our every day life, like cups, Deceptive
simplicity of
macroscopic
physics

saucers, telephones and frog infested ponds, are subject to well known and well un-
derstood laws of macroscopic physics. The laws are pretty simple, although when
applied to almost any realistic system they tend to yield very complex equations
that are almost impossible to understand, seldom admit analytical solutions and
frequently display chaotic behavior. It is often the case that we have to help our-
selves with common-sense understanding of macroscopic world in order to construct,
analyze and solve equations that describe it.

XIXth century physicists expected that laws of macroscopic physics, which they
distilled from their macroscopic observations and refined with their macroscopic
brains should extend do microscopic domain as well. They imagined that atoms
(and they did not suspect at the time that atoms could be made of even smaller
constituents) would be subject to the same laws of Newtonian dynamics that worked
so well on cannon balls and anvils sliding off rotating wedges with rough surfaces.

It is just as well that they were wrong, because if they weren’t, nothing would According to
classical physics
we should not be
here.

work and we could not and would not be here to discuss these issues. Matter based
on the principles of classical physics would cease to exist almost instantaneously.
The Rutherford model predicted that a typical lifetime of a hydrogen atom should
be about 10−10 s. Even if we were to ignore this little difficulty, classical stars
should run out of puff in a mere one hundred million years, as Kelvin and Helmholtz
discovered. Needless to say, Rutherford knew very well that hydrogen atoms did
not decay after only 10−10 s and Kelvin and Helmholtz were well aware of the fact
that our Mother Earth was several billion years old.

Physics of microscopic domain is then quite different, and one should indeed Microscopic
physics averages
away in
thermodynamic
limit.

expect this. A typical macroscopic chunk of matter contains about the Avogadro
number of molecules. It may be 1/100th or 1/1000th or perhaps a thousand times
more than the Avogadro number. It does not make much difference, because the
Avogadro number is so huge: 6.023 × 1023/mole. The laws of microscopic physics
are not only very different, they also appear richer than the laws of macroscopic
physics. But when you put 6.023 × 1023 quantum objects together, couple them
to other equally voluminous lumps of macroscopic matter and immerse the whole
lot in a thermal bath of the Avogadro number of photons, the spectrum of which
corresponds to the room temperature, most of this different and rich microscopic
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physics is going to average away and all we’ll be left with in the macroscopic world
will be our well known and intuitively sound macroscopic physics. . . which predicts
that we should not exist.

One should expect that macroscopic physics ought to be derivable from micro-
scopic physics. How would one go about this? One would derive mathematical
formulae describing the behavior of a system of N quantum objects interacting
with each other. This may not be possible to do exactly because of the complexity
involved, but one could make some simplifying assumptions on the way. One would
then take a limit N →∞ (but in such a way that N/V = density = constant) since
the Avogadro number is large enough to be replaced by infinity, and one would
also assume ambient temperature to be sufficiently high for quantum statistics to
be replaced by the Boltzmann statistics, and in this limit we would expect the
laws of macroscopic physics to emerge. Such a procedure is called taking thermo-
dynamic limit of a quantum theory . It is indeed the case that laws of microscopic
physics, as we know and understand them today, yield laws of macroscopic physics
in thermodynamic limit.

One should not expect that microscopic physics could be derived from macro-Microscopic
physics cannot
be derived from
macroscopic
physics.

scopic physics. Because of the averaging away of quantum effects on taking the
thermodynamic limit, various theories of microscopic physics, some of them bla-
tantly at odds with each other and with experimental phenomenology as well, may
yield the same macroscopic physics in thermodynamic limit. A simple example is
the Boltzmann statistics, which can be derived both from the Fermi-Dirac statistics
and from the Bose-Einstein statistics, the latter two being quite different. There is
no way then that, say, the Fermi-Dirac statistics can be derived from the Boltzmann
statistics.

One should neither expect that macroscopic concepts such as space-time contin-Smuggling
macroscopic
concepts into
the domain of
microscopic
physics

uum or differential manifolds would be applicable to the description of microscopic
systems. There is no reason to expect that microscopic “space” should even be
Hausdorff or, indeed, topological1. Yet one has to start somewhere and the devil
we know is better than the one we don’t. So in effect physicists have smuggled a lot
of macroscopic conceptual framework into their description of microscopic world

1Consider the example of neutron decay. Free neutrons live 885.7±0.8 seconds on average [35].
Their lifetime is measured with macroscopic clocks and we see some neutrons living less than 885.7
seconds and some more. The decay rate is exponential and the process of decay is probabilistic.
But what is the macroscopic time that is used in the measurement? What if every neutron has its
own microscopic clock and all these clocks work at different speeds, the macroscopic time being
an average of all the little microscopic times? The neutron’s lifetime measured by its own clock
could very well be fixed, but because their clocks work at different speeds, we would perceive the
neutron decay process as random when measured against the macroscopic clock.
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and whereas it seems to work in general one is tempted to wonder sometimes if use
of such concepts in microscopic physics is not abuse.

How then can we arrive at correct theories of microscopic world? The answer is Scientific
method and
microscopic
physics

simple if disappointing: educated guesswork combined with laboratory verification.
The so called quantization procedures are just educated guesswork. They are not
real derivations and they seldom yield correct quantum theories without the need
for additional man-handling anyway. Their real purpose is to ensure that whatever
is eventually concocted on the microscopic level yields an expected macroscopic
theory in thermodynamic limit, and this is fair enough. It does not imply, however,
that microscopic theories cannot be constructed in other ways, while still yielding
correct thermodynamic limit. And, indeed, there are a good few ways to choose
from, the most popular being canonical quantization, Feynman path integrals, spin
networks, and more recently topological field theories2.

But at the end of the day all that matters is the microscopic description itself, Microscopic
measurement is
extremely
difficult

which may as well have been guessed, its predictions and its laboratory verification.
And the latter turns out to be a real can of worms because, as yet, nobody has
come up with a way to observe a microscopic system without entangling it at the
same time with a macroscopic (or at best a mesoscopic) measuring apparatus. So,
in effect, we don’t really know what microscopic systems do when they are left on
their own and how they interact with each other in absence of the macroscopic
measuring apparatus – although we may have some vague ideas about it. The
presence of the measuring apparatus in our investigations of microscopic world
is so important that we have been forced to acknowledge that certain measured
quantities and perhaps even measured microscopic objects themselves are made by
the act of the measurement and they do not exist in the same form prior to the
measurement.

But there is no need to panic. There is nothing sacred and incomprehensible Measurement is
a physical
process that can
be analyzed
within the
domain of
microscopic
physics.

about the measurement and the issues of conscience, perception and religious beliefs
are not a part of it. Measurement is a dynamic physical process that represents
interaction of a microscopic system with a system comprising the Avogadro number
of other microscopic systems. It is a lopsided process but it can be understood,
analyzed and verified even within the existing framework of microscopic physics.

2I have once met a scientist who so believed in the physical reality of quantization procedures
that she thought of a special device based on a quantization procedure she worked on. The purpose
of the device was to manipulate quantum systems in a special way. She was most surprised to
learn that the device could not be made, because her quantization procedure did not and could not
correspond to any real physical process. The quantization procedure was merely a mathematical
mapping between certain macroscopic concepts and certain quantum properties, similar to the
mapping between Poisson brackets and commutators.
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This is indeed one of physics’ greatest accomplishments in the last 20 years of the
XXth century.

The difficulties of microscopic measurement can be understood better by pon-
dering what it means to observe.

We observe behavior of macroscopic objects by looking at them or looking at
instruments that, in turn, look at the objects. “Looking” at something implies that
we have a light source emitting photons, which bounce off the observed object, then
enter our eyes and get absorbed by the retina, which converts light into chemical
energy. The chemical energy activates nerves that transmit the signals to the brain,
which interprets them. The crucial link in this chain is where photons bounce off
the observed object. The amount of momentum transmitted from the photons to
the object is so small compared to the momentum of the object that the act of
illumination does not affect the object and its behavior appreciably. Consequently
we can ignore the effect that the light source has on the object. The planets do
not change their orbits and rotation because the sun shines on them. The anvil
sliding off the rotating wedge with the rough surface is not going to stop suddenly
and then jump back to the top, because a laboratory lamp has been turned on3.

But suppose that instead of using a benign light source in the form of a candleFragility of
microscopic
systems

or a light bulb we were to use an exploding nuclear bomb. This would certainly
be an overkill and we would end up none the wiser, because the explosion would
obliterate anything we would try to look at. Yet this is very much what happens
in the microscopic world. Microscopic systems are so delicate, so fragile, that even
bouncing as little as a single photon against them can change their state dramati-
cally. This state of affairs is exacerbated further by the fact that the wavelength of
a photon is inversely proportional to its momentum. A photon of low momentum
has large wavelength, so it is not going to be a precise enough instrument withThe Heisenberg

Uncertainty
Principle

which to observe microscopic systems. But if we attempt to select a photon with
wavelength sufficiently short to give us a well resolved picture of a microscopic ob-
ject, its momentum will be so large that it will destroy the object we are trying to
observe. Because the same relation affects all other elementary particles, we can’t
eliminate this difficulty by choosing, e.g., neutrons to observe microscopic systems
– although it is sometimes possible to get just a little further by observing with
particles other than photons.

But there is a yet another complication which is perhaps the weirdest of allNon-locality of
microscopic
objects

manifestations of quantum physics. Quantum objects such as photons and electrons

3Though a photographic emulsion, of course, is going to react with the incident light, unless it
is of a wavelength to which the emulsion is insensitive – but here we are almost at the border of
quantum physics, so let’s keep this particular example in the footnote.
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are non-local. They only turn into point-like energy discharges when they get
snatched away from their free-range status by a macroscopic measuring apparatus.
It is as if the apparatus sucked them into the point. All other free-ranging quantum
systems the measured particle interacted with prior to this act of kidnaping and
localization detect the sudden absence of their companion and react to it in various
ways. So in quantum physics it is not just the act of “shining light” onto an observed
object that affects it. The act of kidnaping bounced-off photons affects the object
too. It is as if the anvil sliding off a rotating wedge with a rough surface stopped
suddenly and jumped back to the top because we gave it a furtive glance.

Einstein, the great physicist of XXth century, could not stomach this. Yet stom- Einstein’s curse
ach this he had to, because this is what clearly transpired from laboratory experi-
ments. He responded by writing about “the ugly quanta” in some of his last letters.
But quanta aren’t ugly. They are what they are and the best way to make them
likeable is to understand their weirdness and seek to explore it.

So, what can we say about microscopic systems? After all we have been inves-
tigating them for some 100 years or so. Numerous Nobel prizes were awarded for
successful predictions pertaining to and then discoveries and exploitations of var-
ious microscopic phenomena. Devices such as lasers and semiconductor switches,
the functioning of which is based on principles of quantum physics, are incorporated
into common household appliances.

The first thing to observe is that microscopic systems are essentially unpre- Unpredictability
of individual
microscopic
systems

dictable. It is usually impossible to predict exactly what a given single electron
or a photon is going to do in various experimental contexts, although there are
some rare situations for which such predictions can be made. When a single micro-
scopic system is subjected to a “nuclear blast” of a measurement with a macroscopic
apparatus we end up with random read-outs, which, to make things worse, may
not always tell us what the microscopic system’s properties were prior to the mea-
surement. As we have already pointed out, some properties and perhaps even the
objects themselves appear to be made by the measurement.

But this random read-out is not necessarily white-random. If we repeat the mea- Probabilistic
analysis of
microscopic
systems

surement over and over on microscopic systems that have been prepared in exactly
the same way, we’ll discover that there may be certain probability distributions
associated with experimental results. And these distributions, it turns out, can be
predicted with great accuracy.

Quantum physics is a discipline that tells us how to describe, manipulate and Quantum
physicspredict evolution of probability distributions associated with measurements made

on microscopic systems with macroscopic measuring devices.
Much has been said in the past about universality of quantum physics (see, e.g., Universality of

quantum physics
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[44] and references therein). At first glance quantum physics cannot be univer-
sal, because it describes interaction between microscopic systems and macroscopic
devices (the measuring apparatus or just a macroscopic environment – as far as
the microscopic system is concerned it’s the same thing). But microscopic systems
are always in the presence of some macroscopic environment so the question about
what microscopic systems may possibly do “on their own” may perhaps be just as
silly as the question about the number of angels that can dance on the tip of a
needle.

And then again, once physicists have a theory such as quantum physics in hand,Frontiers of
quantum physics they always try to extend it and apply to phenomena that at first glance may be

beyond the theory’s original area of competence. This is a very worthwhile en-
deavor, because it is through such activities that our knowledge and understanding
of nature expands too. And so, one can try to observe microscopic systems with
mesoscopic devices – the present day technology allows, at last, for such measure-
ments to be carried out [40] [28] [47] – and one can then test, whether predictions
of quantum physics still agree with what such mesoscopic measurements return.
What we find then is that certain older formulations of quantum mechanics may
have to be ever so subtly revised and enriched in order to account for what the new
experiments tell us.

These activities are also of great importance to quantum computing, becauseQuantum
physics and
quantum
computing

it is by these means that we learn how to manipulate microscopic systems to our
advantage. And it is exactly here that the frontiers of present day quantum physics
and computer science meet.

This is going to be our battlefield.

2.2 The fiducial vector of a qubit

A qubit is a quantum relative of a classical randomly fluctuating one-bit register.What is a qubit?
It is the simplest non-trivial quantum system.

As is the case with randomly fluctuating one-bit registers, there are many possibleHow can qubits
be made? physical embodiments of a qubit. Qubits can be “natural”, e.g., a neutron placed

in a very strong uniform magnetic field of about 12 T is an example of a natural
qubit – and we’ll work with this example a lot. Qubits can be engineered too, e.g.,
the so called quantronium circuit [52] makes an excellent qubit.

Yet, regardless of the details of their engineering, which can be sometimes quiteQubits can be
described in
terms of fiducial
vectors.

complex, qubits’ fiducial mathematics and dynamics are always the same. Qubits
can be described in terms of fiducial vectors indeed. Each entry in the vector
specifies a probability of finding a qubit in the corresponding configuration.
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A qubit is a two-dimensional system (N = 2) in the sense that has been explained The basis states
of a qubitin section 1.5 on page 19. This means that if we were to give a qubit a quick glance,

speaking figuratively, of course, since glancing at quantum objects is far from trivial,
we would find it in one of two possible states. These states are often referred to as
“up” and “down” and denoted by symbols

|↑〉 and |↓〉

We may associate the binary number 0 with |↑〉 (because |↑〉 is often the lower Qubit computing
energy state of the two) and the binary number 1 with |↓〉 and we end up with an
object that, like a bit, can be used for counting. And this leads to the following
notation that has been adopted in quantum computing:

|↑〉 ≡ | 0〉
|↓〉 ≡ | 1〉

A fiducial vector that describes a qubit is four-dimensional (K = 4) and can be The fiducial
vector of a qubitparameterized as follows:

p =
1
2




1 + rz

1− rz

1 + rx

1 + ry


 (2.1)

where
(rx)2 + (ry)2 + (rz)2 ≤ 1 (2.2)

This fiducial vector very succinctly illustrates several fundamental differences
between classical and quantum systems. First, even though the system is two-
dimensional, its fiducial vector is four-dimensional (K = 4 = N2) [26]. We will no
longer have the trivial mapping between basis states and fiducial states that char-
acterized classical randomly fluctuating registers. In the quantum world fiducial
level description is quite different from the basis state level description.

The second thing to observe is that

3∑

i=0

pi = 2 +
rx + ry

2

Vector p is normalized, but not in the classical sense. The normalization is restricted
to its first two components only, i.e.,

p0 + p1 = 1
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In order to explain what this means we have to focus on a specific physical
realization of a qubit and describe how probabilities p0 through p3 can be
measured.

Perhaps the simplest such realization is a beam of neutrons. AlthoughMagnetic
properties of the
neutron

neutrons don’t have electric charge, they are known to have magnetic moment
[1]

µn = 1.913148± 0.000066 µN

where

µN =
qe~
2mp

= 5.051× 1027 Am2 (2.3)

is the nuclear magneton and where qe is the elementary charge, mp is the
mass of the proton, and ~ is the Planck constant divided by 2π.

According to classical physics the mechanical energy of the neutron immersedSpatially
varying
magnetic field
exerts a force on
the neutron.

in magnetic field B is4

E = −µn ·B (2.4)

If the magnetic field varies in space then there is a force exerted on the neutron
by the gradient of the magnetic field ∇B:

F = −∇E = ∇ (µn ·B) (2.5)

Suppose that B = αxez. For the magnetic field so defined ∇ · B = 0
and ∇ × B = −αey. B has vanishing divergence, as it should, and it can
be generated by current density j = −ε0c

2αey.5 To be more precise, the
Maxwell equations tell us that there ought to be a Bx component varying
with z in this situation too. The field has the configuration as shown in figure
2.1.

The solution B = αxez corresponds to B along the x axis. We will
confine ourselves to the narrow neighborhood of the x axis then in order to
have B described by this formula.

The mechanical energy of the neutron immersed in B is −µz
nαx and the

force acting on it becomes
F = µz

nαex (2.6)

Assuming that the neutron’s magnetic moment can point in every direction,
−µn ≤ µz

n ≤ µn, which, in turn, yields force F = F xex, where

− µnα ≤ F x ≤ µnα (2.7)

Suppose that a well collimated monochromatic and unpolarized6 beam ofGeneration of
the magnetic
field with
required
properties.

neutrons is fired in the y direction as shown in figure 2.2. Then the beam
enters a chamber filled with B = αxez. On leaving the chamber the beam
should fan out in the x direction.

4To brush up on the dynamics of a current loop in the magnetic field see, e.g., [21], section
15-1, “The forces on a current loop; energy of a dipole”.

5To brush up on the Maxwell equations see, e.g., [21], chapter 18, “The Maxwell Equations”.
6Collimated means well focused , monochromatic means that all neutrons have the same energy

and momentum, unpolarized – well, this will be explained later; just read on. . .
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IIIII -
ex

6ez¯ j

¯ j

B

Figure 2.1: The magnetic field configuration for j = −ε0c2αey. The symbol ¯ to
the left of j stands for the tip of the arrow that points at the reader. We find that
B = αxez along the x axis.

-incident beam
ey

¯B

*

j
right beam: |↑〉

left beam: |↓〉

?
ex

Figure 2.2: Splitting of the incident neutron beam by the chamber filled with
B = αxez. The symbol ¯ inside the box representing the chamber stands for the
tip of the arrow that points at the reader.

This is what classical physics says but this is not what happens.
Instead, the beam splits, as shown in figure 2.2, into two well collimated The beam splits

instead of
fanning out

beams, one of which corresponds to F x = −µnα and the other one to F x =
µnα, and the whole middle that corresponds to −µnα < F x < µnα is missing.
This result tells us that as the neutrons encounter B = αxez they either
“align” or “counter-align” with the direction of the ambient magnetic field.
Furthermore, the “alignment” appears to happen instantaneously and in such
a way that no energy is released in the process. Nobody has ever managed to
capture a neutron that would be inclined under some angle to the direction
of the ambient magnetic field and that would then gradually “align” with it,
releasing the excess of −µn ·B in the process.

A classical physics phenomenon that resembles closely what we observe
here is a passage of a light beam through a birefringent crystal. The crystal The splitting of

the neutron
beam resembles
the splitting of a
light beam by a
birefringent
crystal.



50 Chapter 2

splits the beam into two components, which become physically separated from
each other. Each component is linearly polarized in a direction perpendicular
to that of the other component.7

Drawing on this similarity we refer to the two neutron beams that emerge
from our apparatus as fully polarized . The beam that corresponds to F x =
µnα will be deflected to the right8 and the beam that corresponds to F x =
−µnα will be deflected to the left. All neutrons in the right beam have their
µn aligned with B and all neutrons in the left beam have their µn aligned
against the direction of B. Let us call the state of the ones in the right beam
|↑〉 and the state of the ones in the left beam |↓〉.

Now we can ask questions about neutrons comprising the incident beam.Normalization
of the fiducial
vector

We can ask, for example, about the probability that a neutron entering the
chamber will emerge from it in state |↑〉. This probability is p0. We can then
ask about the probability that a neutron entering the chamber will emerge
from it in state |↓〉. This probability is p1. Because the chamber does not
swallow neutrons, every neutron should emerge from it in either of the two
possible states. Consequently the probabilities p0 and p1 must add to 1:

p0 + p1 = 1

This is accomplished automatically by the parameterization:

p0 =
1

2
(1 + rz)

p1 =
1

2
(1− rz)

where −1 ≤ rz ≤ 1.
If we were to rotate the whole set up about the y axis by 90◦ clockwise,Rotating the

chamber by 90◦

lets us measure
p2.

we would end up with the chamber filled with B = βzex. Trying again the
classical description, the energy of a neutron entering the chamber would be
E = −µx

nβz and the force exerted on the neutron would be F = −∇E =
µx

nβez. This time the beam of incident neutrons should fan out in the z
direction. And this is again wrong, because the beam will instead split in the
z direction, the two new beams corresponding to F z = µnβ and F z = −µnβ
with the whole middle −µnβ < F z < µnβ missing. This is shown in figure
2.3.

Neutrons in the upper beam have their magnetic moments µn aligned
with the direction of the magnetic field B = βzex, whereas neutrons in the
lower beam have their magnetic moments aligned against the direction of B.
Let us call the states of the neutrons in the upper beam |→〉 and the states
of the neutrons in the lower beam |←〉. We shall call the probability that a

7Birefringence is discussed in [19], section 33-3, “Birefringence”.
8Here we assume that the three vectors ex, ey and ez have the right hand screw orientation,

i.e., as you rotate from ex to ey you move up in the direction of ez . We also assume that α > 0.
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-incident beam
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Figure 2.3: Splitting of the incident neutron beam by the chamber filled with
B = βzex. As before, the symbol ¯ inside the box representing the chamber
stands for the tip of the arrow that points at the reader.

neutron incident on the chamber emerges from it in the upper beam p2 and
we’ll parameterize it by

p2 =
1

2
(1 + rx)

where −1 ≤ rx ≤ 1. The probability that the neutron emerges from the
chamber in the lower beam is then 1−p2 = 1

2
(1− rx), because every neutron

that enters the chamber must leave it either in the upper or in the lower
beam.

Finally, consider shooting the beam in the y direction into the chamber Measuring p3.
pervaded by B = γxey. Neutrons entering the chamber acquire energy E =
−µn ·B = −µy

nγx and they will be subjected to force F = −∇E = µy
nγex.

Classically, on leaving the chamber the beam should fan out in the x direction
and, again, this is not what is going to happen. The beam will split in the
x direction producing two new beams, which will correspond to µn aligned
with B = γxey (the right beam) and aligned against the direction of B (the
left beam). This is shown in figure 2.4

Let us call the state of neutrons in the right beam, i.e., the ones aligned
with B, | ⊗〉 and the state of neutrons in the left beam, i.e., the ones aligned
against the direction of B, | ¯〉. We have used this notation already in figures
2.2 and 2.3. Symbol ⊗ is suggestive of an arrow flying away from the reader
– in this case the arrow points in the direction of the beam itself. Symbol ¯
is suggestive of an arrow flying towards the reader – in this case the arrow
points against the direction of the beam.

We can ask about the probability that a neutron entering the chamber
will leave in the | ⊗〉 state. This probability is p3 and we can parameterize it
by

p3 =
1

2
(1 + ry)
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where −1 ≤ ry ≤ 1. The probability of finding the neutron in the | ¯〉 state
will be 1 − p3 = 1

2
(1− ry), because every neutron that enters the chamber

must exit it either in the | ⊗〉 or in the | ¯〉 state.
Observe that we cannot measure simultaneously p0, p2 and p3. The appa-Probabilities p0,

p2 and p3

cannot be
measured at the
same time.

ratus needed to measure p0 is oriented differently from the apparatus needed
to measure p2 or p3. In order to measure all three quantities we have to
subject the beam of identically prepared neutrons to all three measurements
separately.

-incident beam
ey

~B

*

j
right beam: | ⊗〉

left beam: | ¯〉

?
ex

Figure 2.4: Splitting of the incident neutron beam by the chamber filled with
B = γxey. The arrow above B indicates that the magnetic field inside the chamber
points to the right.

The measurements do not represent mutually exclusive alternatives either.Probabilities p0,
p2 and p3 do
not describe
mutually
exclusive
configurations.

If we were to produce a polarized beam in the |↑〉 state and then pass it
through a device that should split it between |→〉 and |←〉 states, the beam
would indeed split and it would split, in this case, evenly. This is why the
components of the fiducial vector p add to more than 1. Yet, in order to fully
characterize the state of a qubit, we have to measure all three probabilities:
p0, p2 and p3.

2.3 Polarized states

Now that we know how to measure probabilities that form the fiducial vector p

of a qubit, let us consider certain special situations. We shall focus again on the
neutron beam embodiment of a qubit.

Suppose the beam is fired in the y direction whereupon it enters a chamber filledBeams leaving
the beam
splitting
apparatus are
fully polarized

with B = αxez. The beam will split in the x direction so that neutrons in state
|↑〉 will shoot to the right and neutrons in state |↓〉 will shoot to the left as shown
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in figure 2.2. The fiducial vector that describes neutrons in the right beam looks
as follows:

|↑〉 ≡




1
0

0.5
0.5




Vector r that sits inside p points upwards

r = ez

The fiducial vector that describes neutrons in the left beam is

|↓〉 ≡




0
1

0.5
0.5




Vector r that sits inside p points downwards this time

r = −ez

Observe that p2 and p3 in both fiducial vectors are not zero. This is because in both
cases we have that rx = ry = 0, but this merely leaves p2 = p3 = 1

2 (1 + 0) = 1
2 .

What does this mean?
Let us take the right beam (neutrons in state |↑〉) and let us direct it into an- A fully polarized

beam is split
again.

other chamber filled with B = βzex as shown in figure 2.3. The fiducial vector
that corresponds to |↑〉 tells us that the beam will split in this chamber evenly,
i.e., approximately half of all neutrons (remember that probabilities become exact
measures of what is going to happen only when the number of neutrons in the
beam becomes infinite) that enter it will swing upwards and the other half will
swing downwards. This prediction pertains to the statistical ensemble only. We
have no means of predicting what any given neutron is going to do. It may just as
well swing upwards as downwards, much the same as a well thrown coin can land
just as well heads up or tails up. In any case, half of all neutrons, on average, will
emerge from this chamber in the |→〉 state and the other half will emerge in the
|←〉 state. Their corresponding fiducial vectors will be

|→〉 ≡




0.5
0.5
1

0.5


 r = ex
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and

|←〉 ≡




0.5
0.5
0

0.5


 r = −ex

At first glance we might think then that |↑〉 is a mixture of |→〉 and |←〉. But itThe beam
splitting
apparatus
destroys the
state of the
incident beam
and replaces it
with the mixture
of output beams.

is not so as the following calculation shows9

0.5




0.5
0.5
1

0.5


 + 0.5




0.5
0.5
0

0.5


 = 0.5




1
1
1
1




This fiducial vector corresponds to r = 0, not to r = ez. The state of the beam has
been changed by interaction with the second chamber and whatever information
was stored in the input state has been irretrievably lost. Whereas the input state
was fully polarized, the output state contains no useful information: it is all white
noise.

We will learn later that |↑〉 is related to |→〉 and |←〉 indeed, but it is notSuperposition
versus mixture a mixture of these two states. Instead we will find in chapter 4 that it is a

superposition of these states. We will be able to write

|↑〉 =
1√
2

(|→〉+ |←〉)

but this will not translate into

p|↑〉 =
1

2

“
p|→〉 + p|←〉

”

As we have remarked earlier, the relationship between basis states and fiducial

vectors in quantum physics is far from trivial.

Let us go back to the right beam that emerged from the first chamber, the beamIf the beam
splitting
apparatus is set
so as to confirm
the state of the
beam, the beam
emerges from it
intact.

that was in the |↑〉 state. If instead of directing this beam into the chamber filled
with B = βzex we were to direct it into a chamber filled with B = αxez, i.e.,
a chamber that works exactly the same way as the first chamber, we would find
that all neutrons entering the chamber would be swung to the right. This means
that this time the chamber would not change their state. Instead the chamber
would merely confirm the state of the incident neutrons. This is one of the rare
circumstances in quantum physics when we can predict with certainty what is going
to happen to every individual neutron.

9We’re getting a little ahead here. Mixtures of qubit states will be discussed in section 2.4,
page 56.
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This behavior is very similar to the behavior of photons passing through Neutron and
photon
polarization
states are very
similar.

a series of polarizing plates. Suppose the first plate polarizes incident light
in the z direction. If we insert a second plate behind the first plate and
rotate its polarization axis by 90◦ relative to the first plate, no photons will
pass through the two plates. If we rotate the polarization axis of the second
plate by 90◦ again, both plates will have their axes aligned and every photon
that passes through the first plate is guaranteed to pass through the second
plate as well. We can make this prediction with certainty about every photon
incident on the second plate. But if the second plate has been rotated by
45◦ relative to the first plate, only about a half of the photons incident on
the second plate will be transmitted. Yet, we have no means to make exact
predictions about any individual photon incident on the second plate in this
case. We can only make predictions about the statistical ensemble that, in
this case, corresponds to the beam of the incident photons.

So far we have contemplated polarized states aligned with one of the three prin- Neutron beam
polarized in an
arbitrary
direction

cipal directions, x, y, and z only. What about a state described by vector r of
length 1 but tilted arbitrarily? We can describe components of such a vector by
using spherical coordinates θ and φ (see figure 2.5)

θ is the angle
between ez and
r.
φ is the angle
between ex and
the projection of
r on the
equatorial plane,
z = 0.

r =




sin θ cosφ
sin θ sinφ

cos θ




The corresponding fiducial vector is

p =
1
2




1 + cos θ
1− cos θ

1 + sin θ cosφ
1 + sin θ sinφ




If we were to shoot a beam of neutrons so polarized in the y direction and through Procedure that
tests whether
the incident
beam of
neutrons is fully
polarized

the chamber filled with magnetic field parallel to r and varying linearly in the
direction perpendicular to r all incident neutrons would swing to the same side in
the direction perpendicular to r. If we can find such a direction by trial and error
and confirm that all neutrons swing to the same side indeed, we’ll know that the
incident beam is fully polarized.

It is the same as with polarized light. If we have a fully polarized incident light Procedure that
tests whether
the incident
beam of photons
is fully polarized

beam and a polarizer, we will always be able to find an angle of the polarizer that
lets all incident photons through. If, on the other hand, some photons get absorbed
for every angle of the polarizer, the incident beam is not fully polarized. It is a
mixture of photons polarized in various directions.
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Fully polarized states of a neutron beam are described by vector r of length r of length 1
describes fully
polarized states
of neutron
beams

1 pointing in some arbitrary direction. Such states are pure. They cannot be
produced by mixing neutrons of various polarizations. We have seen what happened
when we tried to mix neutrons in state |→〉 with neutrons in state |←〉.

The set of all pure states of the neutron beam corresponds to the surface tracedBloch sphere
by vector r of length 1 as it points in all possible directions. This is the surface of
a sphere of radius 1. This sphere shown in figure 2.5 is called the Bloch sphere.

1ey

zex

6

ez

?

−ez

Á

r

θ

φ

Figure 2.5: The Bloch sphere. The radius of the Bloch sphere is 1. All vectors
shown in the figure touch the surface of the Bloch sphere with their tips. θ is the
angle between ez and r and φ is the angle between ex and the projection of r on
the equatorial plane.

2.4 Mixtures of qubit states

Consider two qubit states. One given by

p1 =
1
2




1 + rz
1

1− rz
1

1 + rx
1

1 + ry
1
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and the other one by

p2 =
1
2




1 + rz
2

1− rz
2

1 + rx
2

1 + ry
2




We can construct a mixture of the two states in the same way we constructed Mixtures of
qubit states are
constructed the
same way as
mixtures of
states describing
classical
randomly
fluctuating
registers.

mixtures for classical randomly fluctuating registers. The state of the mixture will
be given by:

p = P1p1 + P2p2, (2.8)

where P1 + P2 = 1. What is going to be the resulting vector r for the mixture?

p =
P1

2




1 + rz
1

1− rz
1

1 + rx
1

1 + ry
1


 +

P2

2




1 + rz
1

1− rz
1

1 + rx
1

1 + ry
1


 =

1
2




P1 + P2 + P1r
z
1 + P2r

z
2

P1 + P2 − P1r
z
1 − P2r

z
2

P1 + P2 + P1r
x
1 + P2r

x
2

P1 + P2 + P1r
y
1 + P2r

y
2




We can now make use of P1 + P2 = 1 to collect this into:

p =
1
2




1 + rz

1− rz

1 + rx

1 + ry




where
r = P1r1 + P2r2

Suppose that both states that comprise the mixture, i.e., p1 and p2 correspond to
fully polarized states, i.e., states for which ri · ri = 1, where i = 1 or i = 2. Let us
see now how mixing affects the length of r.

r · r = (P1r1 + P2r2) · (P1r1 + P2r2)

=
(
P 2

1 r
2
1 + 2P1P2r1 · r2 + P 2

2 r
2
2

)

=
(
P 2

1 + 2P1P2 cos θ + P 2
2

)

where θ is the angle between r1 and r2. When θ = 0 we get

r · r =
(
P 2

1 + 2P1P2 + P 2
2

)
= (P1 + P2)2 = 12 = 1

but this is not a mixture, because θ = 0 means that p1 = p2. For a real mixture
θ 6= 0, which means that cos θ < 1. In this case we get that

r · r =
(
P 2

1 + 2P1P2 cos θ + P 2
2

)
<

(
P 2

1 + 2P1P2 + P 2
2

)
= 1
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We see that mixing two fully polarized (and different) states results in a state with Mixing fully
polarized qubit
states produces
a state with
‖r‖ < 1.

a shorter r.
This means that states that fill the interior of the Bloch sphere are all mixtures.

It also confirms that the fully polarized, pure states on the Bloch sphere cannot
be produced by mixing other states, because mixing always delivers a state that isBloch ball
located somewhere inside the Bloch sphere. The pure states on the Bloch sphere
are extremal, which is in agreement with our definition of pure states given on page
19. Set S of all possible physical mixtures and pure states of a qubit10 forms a ball
of radius 1. This ball is called the Bloch ball .

Set S of all possible qubit states is quite different from the set of all
possible states of a randomly fluctuating classical register. The latter is edgy
with pure states well separated from each other. On the other hand pure,
i.e., fully polarized states of a qubit form a smooth continuous surface, the
Bloch sphere. The only reversible Cinderella transformations for a randomly
fluctuating classical register were permutations of its pure states and the
resulting transformations of mixtures. None of them were continuous. On
the other hand, we have an infinite number of continuous reversible Cinderella
transformations of a qubit, because a sphere can be mapped onto itself in an
infinite number of rotations.

Consider a mixture state given by r where ‖r‖ < 1. We can always rotate our
system of coordinates to align z with r and we can always rotate the chamber that
splits the incident neutron beam accordingly. Without loss of generality we can
therefore assume that r = rez and 0 ≤ r < 1. The fiducial vector that describes
this mixture is

p =
1
2




1 + r
1− r

1
1




Because 0 ≤ r < 1 we find that 0.5 ≤ p0 < 1 and 0 < p1 ≤ 0.5. This result tellsA mixed beam
splits for every
possible
direction of the
magnetic field
in the beam
splitting
chamber.

us that for the mixture state the incident beam is always going to split, even if we
happen to adjust magnetic field inside the chamber so that it is parallel to r. There
will be always some neutrons that will swing to the left, even if most (or at worst
a half for r = 0) will swing to the right. The beam is not fully polarized. On the

10Compare with set S for a classical randomly fluctuating register, figure 1.4 on page 17.
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other hand, each of the two beams that leave the beam splitter, is fully polarized.
The one that swings to the right is described by

p|↑〉 =
1
2




1
0

0.5
0.5




and the one that swings to the left is described by

p|↓〉 =
1
2




0
1

0.5
0.5




2.5 The measurement

Consider a general fully polarized state given by

p =
1
2




1 + cos θ
1− cos θ

1 + sin θ cosφ
1 + sin θ sinφ




Let us dwell a moment on what happens when this state is subjected to a full set
of measurements as described in section 2.2 on page 46.

Suppose the first measurement splits the beam in field B = αxez. The measure- Splitting a fully
polarized beam
described by an
arbitrary vector
r.

ment is going to align or counter-align each incident neutron with ez. Approxi-
mately (1 + cos θ) /2 of all incident neutrons will swing to the right and will emerge
from the apparatus in state

p|↑〉 =




1
0

0.5
0.5




The remaining neutrons, (1− cos θ) /2 of the incident neutrons, will swing to the
left and emerge from the apparatus in state

p|↓〉 =




0
1

0.5
0.5






60 Chapter 2

We can now merge both beams creating a new state:

p =
1
2

(1 + cos θ) p|↑〉 +
1
2

(1− cos θ) p|↓〉

=
1
2




1 + cos θ
1− cos θ

1
1




The corresponding vector r is given by

r =




cos θ
0
0




The length of this vector is 1 only for θ = 0 which would mean that we haveMerging the two
beams that exit
the beam splitter
does not
reconstruct the
state of the
incident beam.

managed to align B inside the splitting apparatus with the original direction of r.
Otherwise r2 < 1. The state created by merging beams that left the beam splitter
is a mixture. We see here that the act of measurement destroys the original state
and that state cannot be reconstructed by merely merging the two beams together.
The act of measurement destroys information about the other angle, φ.

Wouldn’t we be luckier then trying a measurement against B = βzex?
Let us try this option. The measuring apparatus in this case is going to split

the beam so that (1 + sin θ cosφ) /2 of the incident neutrons will swing up. These
neutrons will leave the apparatus in state |→〉 described by

p|→〉 =




0.5
0.5
1

0.5




The remaining (1− sin θ cosφ) /2 of the incident neutrons will swing down leaving
the apparatus in state |←〉 described by

p|←〉 =




0.5
0.5
0

0.5




Merging the two beams together will produce the state described by

p =
1
2

(1 + sin θ cosφ) p|→〉 +
1
2

(1− sin θ cosφ) p|←〉
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=
1
2




1
1

1 + sin θ cosφ
1




The corresponding vector r is given by

r =




0
sin θ cosφ

0




Only for θ = 90◦ and φ = 0 is r2 = 1. For all other angles r2 < 1 and so we end up
with the mixture again.

Carrying out this measurement alone is not going to tell us much about either Three
measurements
are required to
determine φ and
θ uniquely.

θ or φ. All we are going to see is some r < 1 and r pointing in the direction
of ex. Great many combinations of θ and φ can produce such r = rex. But
if we were to perform this measurement after the previous measurement on an
identically prepared neutron beam, we would already have θ and this should give
us cosφ. Yet, knowing cosφ still does not let us determine r uniquely, because
cosφ = cos (360◦ − φ). We would have to find about the sign of sinφ in order to
determine φ uniquely. And it is here that the third measurement against B = γxey

comes in.
Every measurement we have discussed in this section converts a pure state into a

mixture, unless it happens to confirm the pure state. The resulting mixture contains
less information than the original state. One has to carry out three independent
measurements on the incident beam, ensuring that the state of the beam does not
change between the measurements, in order to reconstruct the original state of the
beam.

How would we go about measuring a mixture? The procedure discussed Measuring a
mixtureabove refers to the fully polarized state, so we assume from the beginning

that r = 1. We would still measure the three probabilities that would yield

rx = r sin θ cos φ, ry = r sin θ sin φ and rz = r cos θ. Squaring and adding the

three components will give us (rx)2 +(ry)2 +(rz)2 = r2 and hence r. Now we

can divide each of the three components by r and we end up with the same

problem we had for the fully polarized state, i.e., we get θ from rz/r, then

cos φ from rx/r and finally we would get the sign of sin φ from ry/r in order

to determine φ uniquely.



62 Chapter 2

2.6 Pauli vectors and Pauli forms

The generic form of the qubit fiducial vectorPauli vectors
extracted from
the fiducial
vector of a qubit p =

1
2




1 + rz

1− rz

1 + rx

1 + ry




can be rewritten in the following way

p =
1
2

(ς1 + rxςx + ryςy + rzςz) (2.9)

where we are going to call

ς1 =




1
1
1
1


 ςx =




0
0
1
0


 ςy =




0
0
0
1


 ςz =




1
−1

0
0


 (2.10)

Pauli vectors. Although Pauli didn’t invent these four vectors, they are very closelyPauli vectors
and Pauli
matrices

related to Pauli matrices and fulfill a similar role to Pauli matrices within the fidu-
cial formalism. We are going to use the wiggly symbol ς (pronounced “varsigma”)
for Pauli vectors bowing to tradition, because its close relative, the Greek letter σ

(pronounced “sigma”), is used commonly to denote Pauli matrices.
Pauli vectors can be represented in terms of canonical basis vectors of the fiducial

space

e0 =




1
0
0
0


 ,e1 =




0
1
0
0


 , e2 =




0
0
1
0


 , e3 =




0
0
0
1




as follows:

ς1 = e0 + e1 + e2 + e3

ςx = e2

ςy = e3

ςz = e0 − e1 (2.11)

This can be easily inverted to yield ei in terms of ςi:

e0 =
1
2

(ς1 + ςz − ςx − ςy)
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e1 =
1
2

(ς1 − ςz − ςx − ςy)

e2 = ςx

e3 = ςy (2.12)

We are also going to introduce four Pauli forms defined by Pauli forms

ς1 = (1, 1, 0, 0)

ςx = (−1,−1, 2, 0)

ςy = (−1,−1, 0, 2)

ςz = (1,−1, 0, 0) (2.13)

Pauli forms are dual to Pauli vectors, meaning that11 Pauli vectors
and Pauli forms
are mutually
dual.

〈ςi, ςj〉 = 2δi
j , i, j = 1, x, y, z (2.14)

From this we can easily derive that

〈ς1,p〉 = 1

〈ςx,p〉 = rx

〈ςy,p〉 = ry

〈ςz,p〉 = rz

We can therefore use Pauli forms as devices for extracting rx, ry and rz from Pauli forms
extract r from
p.

arbitrary fiducial vectors p.
It is easy to express canonical forms

ω0 = (1, 0, 0, 0)

ω1 = (0, 1, 0, 0)

ω2 = (0, 0, 1, 0)

ω3 = (0, 0, 0, 1)

in terms of Pauli forms and vice versa

ω0 =
1
2

(
ς1 + ςz

)

11It would be quite possible to redefine Pauli vectors or forms so that there wouldn’t be a 2
in front of δi

j in equation (2.14). The reason for the 2 factor is the 1/2 in the definition of the
fiducial vector p. The 1/2 in p in turn carries from the density operator formalism, from which
the fiducial formalism derives. There we have that ρ = 1

2
(1 + rxσx + ryσy + rzσz) where σi,

i = x, y, z are the Pauli matrices and 1 is the identity matrix.
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ω1 =
1
2

(
ς1 − ςz

)

ω2 =
1
2

(
ς1 + ςx

)

ω3 =
1
2

(
ς1 + ςy

)
(2.15)

and

ς1 = ω0 + ω1

ςx = −ω0 − ω1 + 2ω2

ςy = −ω0 − ω1 + 2ω3

ςz = ω0 − ω1 (2.16)

But we can do more with Pauli forms and vectors, since they form natural basesThe bases of
Pauli vectors
and forms

in the fiducial vector and form spaces of the qubit.
The first thing we are going to do with Pauli forms and Pauli vectors is to form

Constructing a
metric tensor in
the fiducial
space

metric tensors in the fiducial vector and form spaces. The metric tensor g in the
fiducial vector space is defined as follows:

g =
1
2

(ς1 ⊗ ς1 + ςx ⊗ ςx + ςy ⊗ ςy + ςz ⊗ ςz) (2.17)

Its counterpart in the fiducial form space, g̃, is defined by

g̃ =
1
2

(
ς1 ⊗ ς1 + ςx ⊗ ςx + ςy ⊗ ςy + ςz ⊗ ςz

)
(2.18)

Metric tensors g and g̃ can be used to convert vectors to forms and vice versa.
Consider the following:

〈g̃, ςj〉 = 〈1
2

∑

i=1,x,y,z

ςi ⊗ ςi, ςj〉

=
1
2

∑

i=1,x,y,z

ςi2δi
j = ςj

Similarly

〈ςi, g〉 = 〈ςi,
1
2

∑

j=1,x,y,z

ςj ⊗ ςj〉

=
1
2

∑

j=1,x,y,z

2δi
jςj = ςi
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Without much ado we can use the above to convert the fiducial vector p to itsConverting
vectors to forms dual fiducial form p̃ 12 Fiducial form of

a qubit
p̃ = 〈g̃,p〉

=
1
2

(
ς1 + rxςx + ryςy + rzςz

)

=
1
2

(1− rx − ry + rz, 1− rx − ry − rz, 2rx, 2ry) (2.19)

And it works in the other direction too

p = 〈p̃, g〉 (2.20)

Metric tensor g̃ can be used to evaluate length of vectors in the fiducial space, Using g̃ to
measure the
length of p.

hence its name, “the metric”. To evaluate the length of p proceed as follows:

〈g̃,p⊗ p〉 = 〈1
2

∑

i=1,x,y,z

ςi ⊗ ςi,p⊗ p〉 (2.21)

=
1
2

(1 · 1 + rxrx + ryry + rzrz) (2.22)

=
1
2

(1 + r · r) (2.23)

The same can be obtained by evaluating 〈p̃,p〉 or

1
2

(1− rx − ry + rz, 1− rx − ry − rz, 2rx, 2ry) · 1
2




1 + rz

1− rz

1 + rx

1 + ry




For fully polarized states, the pure states, we have that r · r = 1 and so 〈p̃,p〉 = 1 for
fully polarized
states〈p̃,p〉 = 1

For completely chaotic states, i.e., states for which r = 0 〈p̃,p〉 = 1/2 for
fully chaotic
states〈p̃,p〉 =

1
2

12 The notation rxςx +ryςy +rzςz does not look quite as elegant as rxςx +ryςy +rzςz because
indexes x, y, and z are on the same level, instead of being placed on the alternate levels, as we have
emphasized in section 1.7. The reason for this is that form p̃ has been generated by conversion
from vector p. Still, we can rescue the situation by lowering indexes on r, i.e., by rewriting the
r dependent part of the form as rxςx + ryςy + rzςz . We can do this because in orthonormal
(Cartesian) coordinates ri = ri, i = x, y, z.
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Tensors g and g̃ have matrix representations, which can be derived from
fiducial representations of Pauli vectors and forms. The procedure is some-
what laborious, but what comes out eventually are two symmetric matrices:

g ≡ 1

2

0
BB@

2 0 1 1
0 2 1 1
1 1 2 1
1 1 1 2

1
CCA (2.24)

and

g̃ ≡ 1

2

0
BB@

4 2 −2 −2
2 4 −2 −2
−2 −2 4 0
−2 −2 0 4

1
CCA (2.25)

It can be checked easily that ‖g‖ = ‖g̃‖−1, i.e., that matrix that corresponds
to g is the inverse of the matrix that corresponds to g̃.

But there is a better way to see that g and g̃ are each other’s inverses.
Consider 〈g̃, g〉 not contracted fully, but instead contracted on one vector and
one form only. The results is

δ =
1

2

`
ς1 ⊗ ς1 + ςx ⊗ ςx + ςy ⊗ ςy + ςz ⊗ ςz

´

The reason there is only one 1
2

in front is because the other one cancels with
the factor of 2 thrown out by the contractions. It is now easy to see that
this new object is simply the Kronecker delta or, in other words, the identity,
because it converts an arbitrary fiducial vector p into itself. Indeed

〈δ, p〉 =
1

2

X
i=1,x,y,z

〈ςi, p〉ςi =
1

2

X
i=1,x,y,z

2piςi = p

As we used Pauli forms ς1 through ςz to extract vector r from p, we can usePauli vectors
can be used to
extract r from
p̃.

Pauli vectors ς1 through ςz to extract r from p̃:

〈p̃, ς1〉 = 1 (2.26)

〈p̃, ςx〉 = rx (2.27)

〈p̃, ςy〉 = ry (2.28)

〈p̃, ςz〉 = rz (2.29)

2.7 The Hamiltonian form

The Hamiltonian form for a qubit is given by:13 14Hamiltonian
form defined
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η = −µ (Bxςx +Byςy +Bzς
z) (2.30)

If the qubit is implemented as a beam of neutrons, then µ is the magnetic moment
of the neutron and B = Bxex + Byey + Bzez is the magnetic field. But a qubit
may be implemented in other ways too, and then the physical meaning of µ and B

is bound to be different. Yet the Hamiltonian form still looks the same.
Coefficients Bx, By and Bz can be extracted from the Hamiltonian form η by Extracting B

from η with
Pauli vectors

the application of Pauli vectors to it:

〈η, ς1〉 = 0

〈η, ςx〉 = −2µBx

〈η, ςy〉 = −2µBy

〈η, ςz〉 = −2µBz

The reason we get −2µBx instead of just −µBx is because there is no 1/2 in front
of η, and remember that 〈ςi, ςi〉 = 2 for i = x, y, z.

The Hamiltonian form is used to calculate the average value of the energy over the The
Hamiltonian
form is used to
calculate the
average energy
over the
statistical
ensemble of
qubits.

statistical ensemble of qubits described by the fiducial vector p. The formula15 looks
the same as formulas we have derived for classical randomly fluctuating registers in
section 1.6, page 22:

〈E〉 = 〈η,p〉
=

〈
−µ (Bxςx +Byςy +Bzς

z) ,
1
2

(ς1 + rxςx + ryςy + rzςz)
〉

= −µ (Bxr
x +Byr

y +Bzr
z)

This expression looks exactly like the classical expression that describes the energy The quantum
formula is
strikingly
similar to the
classical formula
that describes
the energy of a
magnetic dipole
in a magnetic
field.

of magnetic dipole µ in magnetic field B

E = −µ ·B (2.31)

13Here we keep indexes x, y and z on B down, because we really want to use B as a form, not as
a vector. This makes no difference computationally, because Bi = Bi, i = x, y, z in orthonormal
(Cartesian) coordinates. See footnote 12 on page 65.

14 There is a reason why we have chosen η for the Hamiltonian form. The usual letter used for
the Hamiltonian operator in quantum mechanics is H. But we need a low case Greek letter here.
Since H happens to be the Greek capital letter version of “eta”, the low case of which is η, we
end up with η for the Hamiltonian form. The Greek word from which the word “energy” derives
is ενεργεια, which means “activity” or “effect”. It begins with ε, not with η.

15This formula is equivalent to 〈E〉 = Tr (Hρ), where H is the Hamiltonian operator and ρ is
the density operator.
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if we identify

µ = −µ



rx

ry

rz


 (2.32)

But we must remember that in the world of quantum mechanics r is the vector that
parameterizes probability measurements made on the statistical ensemble of, e.g.,
neutrons, and does not represent the space orientation of the individual neutron.
The give-aways that separate the quantum formula from its classical cousin are the
angular brackets around the E.

As we could convert the fiducial vector p to the fiducial form p̃ by contracting pHamiltonian
vector with metric g̃, similarly we can convert the Hamiltonian form to the Hamiltonian

vector by contracting the form with metric g:

η̃ = 〈η, g〉 = −µ (Bxςx +Byςy +Bzςz) (2.33)

The measurement of average energy on the statistical ensemble that corresponds
to p can be then expressed also in this way:

〈E〉 = 〈p̃, η̃〉 (2.34)

Forms and vectors are interchangeable – as long as we remember to interchangeInterchangeability
of forms and
vectors

both at the same time!
It is instructive to evaluate the Hamiltonian form on the basis states |↑〉 and

Energy of the
basis states

|↓〉. Remember that neutrons in the beam always align or counter-align with the
direction of the magnetic field. The basis states |↑〉 and |↓〉 can therefore be observed
if a neutron is placed in B = Bez. For the |↑〉 state we have r = ez and for the |↓〉
state we have r = −ez. Hence

〈η, ↑〉 = −µB (2.35)

and
〈η, ↓〉 = µB (2.36)

The energy difference between the two states is

∆E = E|↓〉 − E|↑〉 = 2µB (2.37)

Suppose we take a neutron in the |↓〉 state and stick it in the chamber filled
with B = Bez. Initially the neutron is going to maintain its original orientation of
the magnetic moment. But this orientation is not stable, because there is another
orientation possible with lower energy, namely
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|↑〉. Consequently the neutron will eventually flip to the lower energy state, releasing
a photon of energy 2µB in the process.

The photon release and flip is called dissipation. It is quite unpredictable al- Energy
dissipationthough the so called half-life of the higher energy state can be measured for various

circumstances. Dissipation is amongst the main causes of errors in quantum com-
puting, so a better understanding of this phenomenon is clearly called for. We will
present a simplified model of dissipation in chapter 5.

The frequency of light emitted in the dissipation process is given by

∆E = 2µB = ~ω

which yields

ω =
2µB
~

(2.38)

The important thing to note here is that we never observe neutrons emitting smaller
portions of energy in this process (which would result in ω < 2µB/~). This means
that the flip does not proceed by going through some intermediate states, which
we could interpret as various angles of tilt between “up” and “down”. The neutron
switches instantaneously between the two opposite and discrete configurations with-
out going through intermediate states, because . . . there aren’t any to go through.
If there were, we would have seen them in the beam splitting experiment.

2.8 Qubit evolution

Amongst most astonishing discoveries of quantum mechanics is that whereas the Quantum
probability
distributions
evolve
deterministicly

behavior of any individual microscopic system is chaotic and in general unpre-
dictable, yet probability distributions that pertain to microscopic systems can be
described with great precision and their evolution predicted accurately by the means
of deterministic differential equations.

This is not an entirely new situation in physics. For example the classical
diffusion equation is deterministic yet it can be derived from a microscopic
picture that assumes completely random molecular motion.

Yet in quantum mechanics the question “where do quantum probabilities
come from” remains unanswered16 and while the orthodox pronouncement

16Although the question “where quantum probabilities come from” remains unanswered, there
have been various answers proposed. These range from the de Broglie-Bohm pilot wave theory
[8] through the Everett’s many-worlds interpretation of quantum mechanics [13] and more. The
reason for our statement that this remains an unsolved problem is that none of the proposed
solutions, which are all mathematically sound, have been verified experimentally.
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states that quantum probabilities are fundamental and unexplainable, most
physicists and chemists who work with quantum mechanics daily have a vague
picture in their mind that associates the wave function of a particle with a sort
of tension traveling through space – wherever the tension is greater the particle
is more likely to materialize. In the absence of macroscopic environments the
particle is dissolved in the “tension wave” and non-local, but as soon as it
encounters a “measuring apparatus” (it can as well be a large lump of matter
without any dials, the particle doesn’t care) the whole shebang shrinks and,
pronto, we get a point-like energy transfer: the particle has been registered.

Professional physicists and chemists are usually very careful not to di-

vulge, especially to their colleagues and students, their feelings on this mat-

ter [4] and just stick to the lore. It is only in the most intimate moments of

marital bliss that a spouse may overhear the physicist or the chemist uttering

an illicit thought about quantum ontology in their sleep or under shower.

The equation we are going to introduce in this section does not describe everyLimited
applicability of
the Schrödinger
equation

aspect of microscopic behavior. For example, it does not describe the measurement
process or the dissipation process. In order to analyze these processes we will
have to advance to multi-qubit systems, because both derive from interactions of a
qubit with its environment. The environment, that can be modeled by other qubits
our selected qubit interacts with. In simple though quite informative models it is
enough to add just one more qubit to the description.

The evolution of a single qubit in presence of a possibly varying “magnetic field”
B is given by the following equation

d
dt

p =
1
2~
〈η ⊗ p̃, ε〉 (2.39)

where
ε =

∑

i,j,k∈{x,y,z}
εijkςi ⊗ ςj ⊗ ςk (2.40)

where εijk = +1 for i = x, j = y, k = z and even permutations thereof, −1 for odd
permutations and 0 otherwise.

Equation (2.39) is due to many people, beginning with Schrödinger who guessedThe pedigree of
equation (2.39) its form for the wave function (already mentioned in the aside above). The Schrödinger

equation was later enhanced by Pauli to describe wave functions of magnetized par-
ticles. Then von Neumann modified the Schrödinger equation still further to de-
scribe evolution of the density operator (mentioned in previous sections). Finally,
equation (2.39) was obtained from the von Neumann equation by taking special
projections that yielded directly measurable probabilities p0 through p3 [26] [53].
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At the end of the day, all these equations describe exactly the same phenomena,Why equation
(2.39) is better
for us.

but equation (2.39) yields results that can be interpreted directly and without a
lot of additional gymnastics. Because the original Schrödinger equation as well
as its Pauli extension were simply guessed and cannot be derived from simpler
assumptions by a meaningful reasoning17 and because equation (2.39) is equivalent
to the Schrödinger-Pauli-von-Neumann equation for a qubit, we are basically going
to stop right here. We can just as well say that equation (2.39) has been guessed
and defer its verification to laboratory experiments.

Tensor ε given by equation (2.40) was invented by Levi-Civita. It is the same kind Levi-Civita
tensorof a device that is used in calculating the vector or cross product of two vectors.

We will see shortly that equation (2.39) translates easily into equation for dr/dt in
which the cross product appears on the right hand side.

Let us substitute our generic parameterizations for p and η in equation (2.39).
Recall that

p =
1
2

(ς1 + rxςx + ryςy + rzςz)

Substituting this into the left hand side of equation (2.39) yields

d
dt

p =
1
2

drx

dt
ςx +

1
2

dry

dt
ςy +

1
2

drz

dt
ςz (2.41)

The term proportional to ς1 is constant and so its time derivative vanishes.
The devil is in the right hand side of equation (2.39), but we can outwit him by

recalling that
〈η, ςi〉 = −2µBi for i = x, y, z

and
〈p̃, ςi〉 = ri for i = x, y, z

Plugging these formulae into the right hand side of equation (2.39) and using the
notational shortcut ςx ∧ ςy = ςx ⊗ ςy − ςy ⊗ ςx yields

1
2~
〈η ⊗ p̃, ε〉

=
1
2~
〈η ⊗ p̃, (ςx ∧ ςy)⊗ ςz + (ςy ∧ ςz)⊗ ςx + (ςz ∧ ςx)⊗ ςy〉

= −µ
~

((Bxry −Byrx) ςz + (Byrz −Bzry) ςx + (Bzrx −Bxrz) ςy)

=
µ

~
((r ×B)x

ςx + (r ×B)y
ςy + (r ×B)z

ςz) (2.42)

17The Schrödinger equation can be derived from Feynman rules about path integrals but it is
still unclear after 55 years whether the reasoning in this case is meaningful, even though Feynman
path integrals are used routinely to construct various quantum field theories and to carry out
numerical computations on discrete lattices.
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Finally, combining equations (2.41) and (2.42) results in

d
dt

r =
2µ
~

r ×B (2.43)

Equation (2.43) is basically the same as equation (2.39), but it is easier to read,
solve and interpret and it doesn’t use funny symbols such as 〈, 〉, p̃ and ε.

The first thing to notice about it is that it does not change the length of r:Equation (2.43)
preserves the
length of r. d

dt
(r · r) = 2r · d

dt
r =

4µ
~

r · (r ×B) = 0 (2.44)

on account of r × B being perpendicular both to r and B. This means that
solutions to equation (2.43) will be given as rotations of vector r. If we begin with
a pure, i.e., fully polarized state, for which r · r = 1, the state will remain fully
polarized. This is why we can say outright that equation (2.43) cannot describe
measurements, because these, in general, reduce the length of r.

In the next two sections we will see that these rotations can be quite complex,Solutions of
(2.43) define
quantum
computational
operations.

but at the same time, we will encounter a great deal of very interesting physics,
which is directly applicable to quantum computing.

2.9 Larmor precession

Consider a qubit described by the fiducial vector p in presence of the static (i.e.,
unchanging in time) and uniform (i.e., unchanging in space) field B = Bez. Sub-
stituting Bez in place of B in equation (2.43) results in

drx

dt
=

2µ
~
ryB (2.45)

dry

dt
= −2µ

~
rxB (2.46)

drz

dt
= 0 (2.47)

We will assume that the initial state of the qubit is fully polarized and so, as
equation (2.44) tells us, the qubit will remain fully polarized.

Equation (2.47) is easiest to solve. It says that rz = cos θ is constant (hence θ isLarmor
precession does
not affect p0

and p1.

constant too), which implies that the probabilities of finding the qubit in states |↑〉
and |↓〉 are constant too.

Equations (2.45) and (2.46) are coupled in the same way that the position and
Equations
(2.45) and
(2.46) are
analogous to
equations that
describe the
harmonic
oscillator.
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the velocity are coupled in the equations of the harmonic oscillator. To see this let
us take the second derivative of rx with respect to time.

d2rx

dt2
=

d
dt

drx

dt
=

2µB
~

dry

dt
= −

(
2µB
~

)2

rx (2.48)

Similarly for ry

d2ry

dt2
= −

(
2µB
~

)2

ry

Equation (2.48) can be satisfied by the following ansatz Larmor
frequency

rx(t) = rx
0 cosωLt

which assumes implicitly that at t = 0 rx = rx
0 = sin θ and drx/dt = 0. The

constant ωL is given by

ωL =
2µB
~

(2.49)

and is called the Larmor frequency after Irish physicist, Sir Joseph Larmor (1857-
1942), who was the first to explain the splitting of spectral lines by a magnetic
field.
ry can be obtained from equation (2.45), which states that

ry =
1
ωL

d
dt
rx = − 1

ωL
ωLr

x
0 sinωLt = −rx

0 sinωLt

In summary, this is our solution

rx = sin θ cosωLt (2.50)

ry = − sin θ sinωLt (2.51)

rz = cos θ (2.52)

The solution describes vector r, which rotates about the direction of B in such a Larmor
precessionway that its projection on the direction of B stays the same, see figure 2.6. Such a

motion is called a precession, hence this phenomenon is referred to as the Larmor
precession.

Although the probabilities of finding the qubit in |↑〉 and |↓〉 are constant, the
probabilities of finding the qubit in states |→〉 and | ⊗〉 change all the time. The
state remains fully polarized, i.e., pure, but the direction of its polarization precesses
around B.
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Figure 2.6: Larmor precession

The Larmor precession occurs with the angular frequency of ωL = 2µB/~, which
is the same as the frequency of the photon emitted as the result of the dissipative
transition from |↑〉 to |↓〉 (cf. equation (2.38) on page 69).

In order to evaluate probabilities of finding the qubit in various basis states we Finding the
probabilitieshave to substitute solutions (2.50), (2.51) and (2.52) into the fiducial vector p.

The probability of finding the qubit in state |↑〉 is1 + cosα =
2 cos2 α

2

p0 =
1
2

(1 + rz) =
1
2

(1 + cos θ) = cos2
θ

2

The probability of finding the qubit in state |↓〉 is1− cosα =
2 sin2 α

2

p1 =
1
2

(1− rz) =
1
2

(1− cos θ) = sin2 θ

2

The probability of finding the qubit in state |→〉 is

p2 =
1
2

(1 + rx) =
1
2

(1 + sin θ cosωLt)

and the probability of finding it in state | ⊗〉 is

p3 =
1
2

(1 + ry) =
1
2

(1− sin θ sinωLt)

Note that just placing the qubit in a static and uniform magnetic field B = BezLarmor
precession does
not measure the
qubit.
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does not in itself result in the measurement, which is why the qubit remains in a
pure state, although the state itself varies with time. In order to measure the qubit
we have to pass it through a chamber where magnetic field has a non-vanishing
gradient. Another way to measure the qubit is to measure its own magnetic field
with very sensitive Helmholtz coils, which is how the results of computations are
read out in Nuclear Magnetic Resonance experiments.

If the qubit is implemented by other means, i.e., not as a microscopic magnet,
the physical meaning of B and µ are different and then appropriate measurement
methods have to be devised.

The Larmor precession can be a parasitic effect in context of quantum computing. Larmor
precession as a
parasitic effect

Usually we want our qubits to just stay as they are. It is sometimes possible to just
switch B off between applications of various quantum gates. This, again, depends
on how qubits are implemented. In Nuclear Magnetic Resonance experiments B

cannot be switched off. In this case an elaborate procedure called refocusing must Refocusing
be deployed to cancel the effects of Larmor precession in final account.

2.10 Rabi oscillations

The Larmor precession does not change the proportions of |↑〉 to |↓〉 in a qubit state Larmor
precession does
not affect the
computational
value of a qubit.

described by p. If we were to make the associations |↑〉 ≡| 0〉 and |↓〉 ≡| 1〉 then the
precessing qubit would stay put, as far as its computational value is concerned, even
though something would keep going inside it, so to speak. But Larmor precession
may have effect on computations in case the qubit couples to other qubits, so it
cannot be ignored.

The question for this section is how we can change the proportion of |↑〉 to |↓〉 in How to flip a
qubit?a qubit, and, in particular, how we can flip |↑〉 into |↓〉 and vice versa in a controlled

way, i.e., without waiting for a dissipation event to occur.
There are various ways in which this can be accomplished. The simplest and

the most commonly practiced is to apply a small magnetic oscillation in the plane
perpendicular to the background magnetic field B. The result of this oscillation
will be a slow, very slow in fact compared with the Larmor precession, latitudinal
movement of the tip of vector r. The latitudinal drift when combined with the
Larmor precession results in drawing a spiral curve on the surface of the Bloch
sphere that connects its two poles.

In order to analyze this effect in more detail we are going to solve equation (2.43)
yet again, taking all components of B into account, although we are still going to
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make some simplifying assumptions. Expanding dr/dt = (2µ/~) r×B in the x, y, z
coordinates explicitly gives us the following three equations

drx

dt
=

2µ
~

(ryBz − rzBy) (2.53)

dry

dt
=

2µ
~

(rzBx − rxBz) (2.54)

drz

dt
=

2µ
~

(rxBy − ryBx) (2.55)

We are going to assume thatApproximations
made |Bx| ¿ |Bz|

|By| ¿ |Bz|
Bz = const

We are also going to assume that the initial state is fully polarized, which implies
that the solution for all values of t must be fully polarized too.

Since Bx and By are small compared to Bz we can try the following form of the
solutionGeneral form of

the solution
rx = sin θ(t) cosωLt (2.56)

ry = − sin θ(t) sinωLt (2.57)

rz = cos θ(t) (2.58)

In other words, we assume that the qubit keeps precessing as in section 2.9, but
this time the angle θ is no longer constant. Instead it is a slowly varying function
of time – slowly compared to ωLt. This assumption is equivalent to saying that we
are going to ignore rzBy compared to ryBz in equation (2.53) and rzBx compared
to rxBz in equation (2.54). With these simplifications equations (2.53) and (2.54)
are the same as equations (2.45) and (2.46) on page 72, which, as we know already,
describe the Larmor precession. So this leaves us with equation (2.55).

First let us substitute (2.58) in the left hand side of equation (2.55). The resultLHS worked on
is

d
dt
rz =

d
dt

cos θ(t) = − sin θ(t)
d
dt
θ(t) (2.59)

Substituting (2.56) and (2.57) in the right hand side of equation (2.55) yieldsRHS worked on

2µ
~

(rxBy − ryBx)

=
2µ
~

(By sin θ(t) cosωLt+Bx sin θ(t) sinωLt) (2.60)
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Comparing equations (2.59) and (2.60) tells us that we can cancel sin θ(t) thatLHS = RHS
occurs on both sides and this yields a simpler differential equation for θ(t)

d
dt
θ(t) =

2µ
~

(Bx sinωLt+By cosωLt) (2.61)

Until now we have not specified Bx and By, other than to say that they’re much Specifications
for Bx and Bysmaller than Bz. We are now going to specify both, so as to make equation (2.61)

easier to solve. And so, let us assume the following

Bx = B⊥ sinωt (2.62)

By = B⊥ cosωt (2.63)

On this occasion we shall also rename Bz to B‖. Plugging (2.62) and (2.63) into
(2.61) results in

d
dt
θ(t) =

2µB⊥
~

(sinωLt sinωt+ cosωLt cosωt)

Now we can invoke the well known high school trigonometric formula (shown in
the margin note) to wrap this into cosα cosβ +

sinα sinβ =
cos (α− β)d

dt
θ(t) =

2µB⊥
~

cos (ωL − ω) t (2.64)

which at long last can be solved easily for θ(t) Solution found

θ(t) =
2µB⊥
~

sin (ωL − ω) t
ωL − ω (2.65)

assuming that θ(0) = 0, i.e., assuming that at t = 0 the qubit is in state |↑〉.

2.10.1 Solution at resonance

We will first consider solutions at frequencies ω that are very close to ωL or right Resonance
conditionon the spot, i.e, ω = ωL. This corresponds to buzzing the qubit with a small

transverse magnetic field B⊥ = (B⊥ sinωLt) ex + (B⊥ cosωLt) ey that rotates with
the Larmor frequency of the qubit itself.

For very small values of (ωL − ω) we can replace the sine function with lim
x→0

sinx = x

sin (ωL − ω) t ≈ (ωL − ω) t

This way the (ωL − ω) factor cancels out and equation (2.65) becomes Solution at
resonance
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θ(t) =
2µB⊥
~

t (2.66)

Angle θ grows linearly with time t. Although θ is restricted to 0 ≤ θ ≤ π in Rabi oscillations
principle, the solution doesn’t care about this and continues to grow beyond π.
What does this mean? First, note that cos θ = cos(2π − θ). This implies that as
far as rz is concerned, once θ has exceeded π, we can replace it with θ′ = 2π − θ
and reduce the angle to the 0 . . . π range. In other words, once θ has reached π, it
begins to swing back, until it returns to θ = 0, whereupon it is going to resume its
journey south.

So, what we have here are oscillations of vector r between north and south
interposed on Larmor precession. The north-south oscillations of r produced by this
process, see figure 2.7, are called Rabi oscillations, after U. S. physicist and Nobel
prize winner (1944) Isidor Isaac Rabi (1898-1988), and occur with the frequency
that is much lower than the Larmor frequency.
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Figure 2.7: Rabi oscillations – as vector r continues to precess very rapidly about
ez, its latitude θ (measured from the north pole) increases very slowly, until r flips
to the southern hemisphere and approaches the south pole, whereupon the process
reverses.

The period of these oscillations is given byRabi frequency

θ(TR) = 2π =
2µB⊥
~

TR
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which yields

TR =
π~
µB⊥

(2.67)

The angular frequency of Rabi oscillations, ωR, is

ωR =
2π
TR

=
2µB⊥
~
¿ 2µB‖

~
= ωL (2.68)

because
|B⊥| ¿

∣∣B‖
∣∣

If we start the process with a qubit in the basis state |↑〉 = | 0〉, aligned with How long does it
take to flip a
qubit?

B‖, it is going to take ∆t = TR/2 = π~/(2µB⊥) of buzzing the qubit with B⊥ =
(B⊥ sinωt) ex +(B⊥ cosωt) ey to flip it to |↓〉 = | 1〉. And similarly, to flip the qubit
from |↓〉 = | 1〉 to |↑〉 = | 0〉 will take the same amount of time.

The full form of the solution for r(t) is

rx = sinωRt cosωLt (2.69)

ry = − sinωRt sinωLt (2.70)

rz = cosωRt (2.71)

Let us have another close look at what is going to happen when θ grows More about r
going back northabove π. On the way back from the south pole π < θ < 2π and in this region

sin θ is negative. Replacing θ with θ′ = 2π−θ, which has the effect of reducing
θ back to [0, π], and writing the minus in front of sin θ explicitly, we find that
the solution assumes the following form now:

rx = − sin θ′ cos ωLt = sin θ′ cos(ωLt + π)

ry = sin θ′ sin ωLt = − sin θ′ sin(ωLt + π)

rz = cos θ′

where we have made use of the fact that − sin α = sin(α + π) and − cos α =
cos(α + π) in order to absorb the changed sign into the sin and cos of the
Larmor precession.

This result tells us that on its way back north vector r is going to visit
a point of the Bloch sphere, which, for a given angle θ, is on the other side,
compared to the point it had visited for the same angle θ on the way south.

As vector r nears the north pole, its returning trajectory on the Bloch
sphere is going to align itself with the starting trajectory, because it is its
reflection with respect to the ez axis, so that after having reached the north
pole vector r will go south on exactly the same trajectory it traced originally.

As we go south and north, and south again and north again, we’re going
to follow the same spiral all the time, crossing the equator at exactly the
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same two points, the point on the return voyage being on the other side, with
respect to the point at which we cross the equator on the way south.

This property can be used in the following interesting operation, which isRamsey
experiment due to U. S. physicist and Nobel prize winner (1989) Norman Foster Ramsey

(born in 1915).
Suppose we use the Rabi oscillations to tilt r by 90◦ south. We can now

switch off the buzzing field B⊥ and just wait a while, allowing for the Larmor
precession to rotate r about the z axis. Then we can switch B⊥ on again
and continue tilting the qubit. If the Larmor precession has rotated the qubit
by a multiple of 2π (i.e., 360◦) in the meantime, the qubit will come back to
the point from which it left and on receiving the buzzing signal will resume
its journey to the south pole. But if the Larmor precession has rotated the
qubit by an odd multiple of π (i.e., 180◦), the qubit will resume its journey
along the Rabi trajectory at the point that’s on the other side of the Bloch
sphere and so it’ll come back north instead.

What is going to happen if the Larmor precession leaves vector r stranded
at some point that is between the two points where the Rabi spiral crosses
the equator? When the buzzing signal kicks in, it is going to be out of phase
now with respect to the Larmor precession. We can describe this by altering
equation (2.64) on page 77 and adding a fixed angle φ to the phase of the
qubit:

d

dt
θ(t) = ωR cos ((ωL − ω) t + φ)

Making again use of the school formula shown in the margin we can rewritecos(α + β) =
cos α cos β −
sin α sin β

this as
d

dt
θ(t) = ωR (cos (ωL − ω) t cos φ− sin (ωL − ω) t sin φ)

The resonance condition ω = ωL kills the sin(ωL − ω)t term and converts
cos(ωL − ω)t to 1, which yields

d

dt
θ(t) = ωR cos φ

the solution of which is
θ(t) = ωRt cos φ + θ0

Let us assume this time that at t = 0 θ = π/2, i.e., the tip of vector r is on
the equator and its longitude is φ. Then

θ(t) = ωRt cos φ +
π

2

First observe that for φ = 0 we get exactly what we had before, θ is going
to increase or, in other words, r will continue on its way south at the rate of
ωR per second. On the other hand, if φ = π, cos φ = −1 and then θ is going
to decrease at the rate of ωR per second, i.e., r will turn north. So we have
now reproduced the basic characteristics of our Rabi spiral. For any other
angle φ between 0 and π, the progress of r is going to be slowed down. For
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0 < φ < π/2 r will move south. For π/2 < φ < π r will move north instead.
But for φ = π/2 r will get stuck on the equator.

As was the case with the Larmor precession, wagging r to and fro on the Bloch Rabi oscillations
do not
constitute a
measurement

sphere with transverse oscillating magnetic fields still does not constitute a mea-
surement. If we start with a fully polarized qubit state, we end with a fully polarized
qubit state too.

Let us have a look at how probability of finding the qubit in state |↑〉 varies with
time

p0 =
1
2

(1 + rz) =
1
2

(1 + cosωRt)

We are again going to make use of the high school trigonometric formula to wrap 1
2

(1 + cos 2α) =
cos2 αthe above into

p0 = cos2
ωRt

2
(2.72)

At t = 0 we have that p0 = 1. Then the probability begins to diminish and at
ωRt/2 = π/2 we get p0 = 0, which means that |↑〉 has flipped completely to |↓〉.
This is the same picture as given by the evolution of r, this time expressed in terms
of probabilities.

This is also another rare circumstance when an outcome of a quantum mechan- Exact
predictions can
be made about
quantum
systems

ical experiment can be predicted exactly and with certainty for every individual
quantum system. If you take a neutron from an |↑〉 beam and send it into a cham-
ber with B‖ and B⊥ as specified in this section, after π~/(2µB⊥) seconds spent in
the chamber (but not a fraction of a second longer!) the neutron is guaranteed to
be in the |↓〉 state.18

2.10.2 Solution off resonance

Solution (2.65) on page 77 is valid for all values of ω regardless of whether ω is close
to ωL or not. It is valid as long as the approximation we have made, B⊥ ¿ B‖, is
valid. For ω = ωL we found that θ varied linearly with time, eventually swinging
onto the other side, i.e., from θ = 0 to θ = 180◦.

It is easy to see that for ω very far away from ωL something quite different is Solution far
from the
resonance - the
qubit does not
absorb energy.

going to happen. Let us recall equation (2.65):

θ(t) =
2µB⊥
~

sin (ωL − ω) t
ωL − ω (2.73)

18In practice we cannot make this prediction with certainty because the Helmholtz field B⊥
is usually highly non-uniform and because we may not be able to switch it on and off exactly
on time. But we want to distinguish here between the fundamental quantum probabilities and
probabilities that arise from imperfections of the experimental apparatus.
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When |ωL − ω| >> 0 the denominator becomes a very large number.19 Therefore
the amplitude of oscillations described by (2.73) is very small and the oscillations
themselves are very fast. The result is that vector r keeps pointing up and just
vibrates very quickly around θ = 0. The qubit does not absorb energy from the
incident radiation.

What if ω 6= ωL but they are not so far apart that r gets stuck on θ = 0?Solution near
the resonance Observe that it is only for ω = ωL that θ can wander all over the place. Otherwise

−1 ≤ sin (ωL − ω) t ≤ 1 and θ is restricted to:

− 2µB⊥
~ (ωL − ω)

≤ θ ≤ 2µB⊥
~ (ωL − ω)

We can therefore ask the simple question: how far away can we move ω from ωL

so that θ can still reach π – in however circuitous manner? And the answer to this
question is

π =
2µB⊥

~ (ωL − ω)
which yields

ωL − ω =
2µB⊥
~π

(2.74)

A somewhat better measure here would be (ωL − ω) /ωL, because this quantityCondition for
the effective
absorption of
energy from the
buzzing field
B⊥.

is non-dimensional and it will let us eliminate ~ and µ from the equation. Dividing
(2.74) by Larmor frequency (given by equation (2.49) on page 73) results in

ωL − ω
ωL

=
2µB⊥
~π

~
2µB‖

=
B⊥
πB‖

(2.75)

This gives us a measure of how precisely we have to tune the frequency of the
buzzing field B⊥ in order to eventuate a qubit flip. Observe that whereas on the
one hand the smaller B⊥/B‖ the more accurate is the solution given by equation
(2.73), on the other hand, the closer we have to get with ω to ωL in order to
manipulate the qubit according to this equation.

In a typical NMR experiment B‖ may be on the order of 12 T. The amplitude of
the buzzing field, which is generated by Helmholtz coils, is very tiny, usually on the
order of one Gauss, where 1 Gauss = 10−4 T.20 This tells us that we must ensure
at least

ωL − ω
ωL

<
10−5

π

19 We should point out that the Planck constant, ~, in the denominator does not squash |ωL − ω|
at all, because there is another ~ hidden inside µ and they cancel out.

20This data is based on the Varian Inova 500 MHz specifications.
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2.11 The quantronium

The quantronium [52] is a quantum electronic circuit realization of a qubit. It Quantronium is
a
superconducting
device

is not a classical electronic device that simulates a quantum system. It is a true
quantum system in its own right, even though it does not incorporate obvious
microscopic elements such as, e.g., an individual atom of phosphorus embedded
in silicon lattice in a precisely defined location and surrounded with controlling
electrodes [36] [37]. Instead, the quantronium relies on one of the few macroscopic
manifestations of quantum physics, superconductivity. This has the advantage that
the circuit can be made using a pretty standard, though not necessarily “industry
standard”, microelectronic technology.21

U

u(t)

Cg

N

1
2EJ

1
2EJ loop

Φ

EJ0

IΦ

2C

2C

Ib(t)

V (t)

tuning

quantronium circuit readoutpreparation

Figure 2.8: The quantronium and its auxiliary electronic circuitry (from [52])

The quantronium circuit together with other auxiliary circuitry is shown in figure
2.8. We cannot analyze the functioning of this circuit in this section in great detail,
because this would call for quantum physics background that has not been covered
yet. But we will explain enough of it to illustrate how the circuit is used to observe

21The quantronium was patterned using electron beam lithography and aluminum evaporation.
Electron beam lithography is a very precise laboratory technique that allows for nano-level pattern
definition. Because of its slowness it cannot be used in mass-produced devices.
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the Rabi oscillations and other quantum effects, e.g., the Larmor precession, in the
qubit.

The qubit itself is contained in the large black dot to the left of the letter N .Where is the
qubit? The dot symbolizes a low-capacitance superconducting electrode, which in this

configuration is called the Cooper pair box. The Cooper pair box is connected
to the rest of the circuit through two Josephson tunnel junctions represented in
figure 2.8 by the two square boxes with 1

2EJ written inside them. The Josephson
junctions and the Cooper pair box are biased across the gate capacitance Cg by the
voltage source U .

A Cooper pair is a pair of electrons, coupled to each other and to the lattice of the
crystal they live in, so that they form a quasiparticle, i.e., a composite and non-local
quantum object with elementary particle characteristics. The total number of such
pairs in the Cooper pair box is N . The energy of the box is quantized, meaning
that it can assume several discrete values, which depend on the bias voltage U and
the DC current IΦ that flows in the coil adjacent to the quantronium circuit (shown
just below the circuit in figure 2.8) and generates the magnetic field flux Φ in the
quantronium circuit loop. The ground energy level and the first excited energy
level of the Cooper pair box form a two state quantum system, i.e., a qubit. We
associate the ground state with | 0〉 and the first excited energy level with | 1〉. For
the operational parameters of the circuit both states are characterized by the same
average number of Cooper pairs in the box in order to make the qubit insensitive
to fluctuations of the gate charge.

The bias voltage U and the current IΦ are used to tune the properties of theTuning the
qubit:
ωL = ωL(U, IΦ)

qubit with the effect that its Larmor frequency, ωL = 2µB‖/~, is a function of U
and IΦ. But there is no simple formula that we can use to separate µ from B‖. For
a given pair of U and IΦ we get µB‖ bundled together – although, of course, we can
separate them experimentally after we have carried out sufficient measurements on
the circuit.

The buzzing field B⊥ is represented by the variable voltage u(t) that is super-Preparing the
qubit with the
u(t) pulse

imposed on U . In order to drive the qubit the frequency of the pulse must match
the qubit’s Larmor frequency fL = ωL/(2π), which, for the circuit drawn in figure
2.8 was 16.4635± 0.0008 GHz. By choosing the amplitude and the duration of the
pulse, we can swing vector r up and down, thus affecting p0 and p1 of the qubit.
Having done so we can commence the measurement, which is implemented by the
part of the circuit drawn on the right hand side of figure 2.8.

States | 0〉 and | 1〉 are differentiated by the supercurrent in the loop that developsMeasuring the
qubit as the result of the trapezoidal readout pulse Ib(t), which can be sent into the circuit.

The current flows through both Josephson junctions labeled by 1
2EJ and through
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the third Josephson junction on the right hand side of the loop, labeled by EJ0.
The two capacitors in the readout part of the circuit are meant to reduce phase
fluctuations in the loop. The supercurrent in combination with the bias current in
the EJ0 junction can switch the junction to a measurable voltage state V (t). This
switching is probabilistic too. There is a high probability that the junction will
switch if the qubit is in state | 1〉 and a low probability that it will switch if the qubit
is in state | 0〉. So we have to play with two probabilistic processes here: we have
quantum probabilities associated with the qubit itself, and then we have another
layer of probabilities associated with the readout circuitry. The efficiency of the
readout is 60%, i.e., in 60% of cases, the readout circuit will correctly discriminate
between | 0〉 and | 1〉. While not perfect this is sufficient to let us observe important
quantum phenomena such as Rabi oscillations.

The qubit is isolated from the environment and from the readout circuitry by Isolating the
qubita variety of means. First, the whole circuit is cooled to 15 mK. Then additional

protection is provided by large ratios of EJ0/EJ and C/CJ , where CJ is the capaci-
tance of the Josephson junction. Parameters U and IΦ are chosen so as to eliminate
charge fluctuation noise and flux and bias current noise.

The observed Rabi fluctuations of the quantronium are shown in figure 2.9 (A). Quantronium
measurements
are an example
of sequential
exploration of
the qubit’s
statistical
ensemble.

Every point in this graph is the result of 50,000 identical qubit preparations and
measurements, which were carried out in order to collect sufficient statistics for the
estimate of the switching probability. The standard deviation on 50,000 measure-
ments of this type is

√
50, 000 ≈ 224, which means that our probability estimates

are loaded with no more than 0.5% error.22

The buzzing signal u(t) of amplitudeB⊥ = 22µV and frequency fL = 16.4635 GHz
was used for all points. Flux Φ was set to zero.

In order to prepare the qubit for a given point on the graph, the qubit was first
allowed to thermalize and align in U ≡ B‖, dropping to its ground state | 0〉. Then
the qubit was buzzed with u(t) for a specific duration (up to 1µs). As soon as
the buzzing had stopped, the trapezoidal pulse Ib(t) was sent into the circuit in
order to trigger the switching of the large Josephson junction EJ0. If the junction
had switched, the resulting pulse V (t) was observed, otherwise there was no pulse.
The ratio of “switched” to “not switched” for 50,000 shots/point is what has been
plotted in figure 2.9 (A).

We can clearly see oscillations in the graph that are the function of the pulse du- Rabi oscillations
of quantroniumration. Because the switching probability in the large junction EJ0 is proportional

to p0, the observed oscillations are indeed Rabi oscillations. For the Larmor fre-

22See, e.g., chapter 6 in [19].
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quency in the tens of GHz range, the Rabi frequency is in the tens of MHz range.
The Rabi oscillations for this qubit are therefore about a thousand times slower
than the Larmor precession.

The amplitude of the oscillations is clearly damped. This is because the qubit be-Qubit
depolarization comes depolarized as it interacts with the environment, however much the circuit’s

designers had tried to reduce such interaction. This effect is not described by our
somewhat simplistic model, nor can it even be described by equations (2.39) and
(2.43) on pages 70 and 72 respectively. Nevertheless we can fit the data with an
exponentially damped sinusoid and extract the Rabi frequency from it. The fitted
curve is drawn in the red.

Having done so, we can repeat the whole experiment for different values of theDependence of
ωR on B⊥ buzzing signal u(t) amplitude, B⊥, and verify that the Rabi frequency ωR obtained

from the measurements increases linearly with B⊥ as equation (2.68) on page 79
(ωR = 2µB⊥/~) asserts.

The results of these measurements shown in the right panel on figure 2.9 (A) fully
confirm equation (2.68). The Rabi frequency ωR is indeed directly proportional to
B⊥.

Figure 2.9 (B) shows the result of the Ramsey operation on the quantroniumThe Ramsey
experiment qubit. The operation is carried out as follows. First the qubit is thermalized and

brought to state | 0〉. It is then buzzed with B⊥ for the time required to rotate
it by π/2, i.e., by 90◦. The buzzing stops then and the qubit is allowed to precess
around the equator for ∆t microseconds, whereupon the buzzing is resumed. We
buzz the qubit again for the time required to rotate it by the further 90◦ in normal
circumstances. But recall our discussion of the Ramsey experiment on page 80.
Only if the qubit has precessed by a multiple of 2π in time ∆t, will it resume it
journey south with the same angular polar velocity ωR. If the qubit has precessed
by an odd multiple of π in the time ∆t it will instead return back north with the
same angular polar velocity ωR. But for any other angle the qubit has precessed
in the time ∆t its march south or north will be slowed down by the cosine of the
angle. Consequently, when we apply the second buzz to the qubit, it won’t be
enough to make it go all the way to the top or all the way to the bottom. When
the measurement is made the qubit will have some probability of being found in
| 1〉 and some probability of being found in | 0〉. This probability will fluctuate
with ∆t as shown in figure 2.9 (B). The fluctuations observed in this figure, in
essence, show us that the qubit indeed precesses with the Larmor frequency around
the z direction. The amplitude of the fluctuations diminishes exponentially, as was
the case with the Rabi oscillations, even though the qubit is disconnected from
the driving force during the time ∆t when it is expected to precess freely. The
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depolarization observed in this measurement can be used to estimate the so called
coherence time of the qubit. Any quantum computations we want to carry out
using the qubit, must be completed well before the qubit’s quantum state decoheres,
which manifests in its depolarization.

We have argued in section 2.10.2 on page 81 that the buzzing signal could force Resonant
absorption by
the quantronium
qubit

qubit to flip its basis state only if the buzzing frequency was very close to the
Larmor frequency of the qubit. Equation (2.75) quantified this by stating that the
qubit could not flip its state at all if |ω−ωL|/ωL > B⊥/(πB‖). The insert in figure
2.10 (B) shows how the qubit flip probability for the quantronium depends on the
frequency of the buzzing signal u(t) for circuit parameters that correspond to the
saddle point of the diagram shown in figure 2.10 (A). This saddle point was then
used in the Rabi and Ramsey experiments, because of the parametric stability of
the circuit in its vicinity.

Every point in the graph in figure 2.10 (B) is the result of 50,000 measurements
too. For each measurement the quantronium qubit was first thermalized and al-
lowed to align with B‖ in its ground state | 0〉. The qubit was then irradiated
with microwaves of a given frequency, emitted by a small antenna inserted into the
cryostat together with the circuit, for up to 100 ns (TR in figure 2.9 is about 100 ns)
and then the measurement was activated by sending the trapezoidal pulse Ib(t) into
the loop of the quantronium circuit. The big Josephson junction EJ0 would switch
sometimes, which would be detected by observing the pulse V (t), and sometimes
it wouldn’t. Now, whether it switched or not would depend on the state of the
qubit, as we have pointed out already, so the switching probability here is related
to whether the qubit itself flipped to | 1〉 or not. After 50,000 of such trials sufficient
statistics were collected to give us the estimate of the switching probability for a
given frequency f = ω/(2π). The measurements were repeated while the frequency
of the microwave signal was varied so that the whole neighborhood of the resonance
point f = fL = ωL/(2π) was covered. And this is what is shown in figure 2.10 (B).
We can clearly see a well defined peak. The peak can be fitted with the Lorentz
absorption curve yielding the exact position of the resonance at fL = 16.4635 GHz
and the peak width ∆f = 0.8MHz.

The quantronium is more than just a yet another attempt to fabricate a qubit as a Quantum
systems are
probabilistic and
extremely fragile

solid state device – and perhaps the first one that gives us more than just a glimmer
of its quantum nature. It is a very elucidating example of a simple quantum system
that brings up two of quantum physics’ most important features: its probabilistic
nature and its extreme sensitivity to the environment. Just as importantly, the
quantronium illustrates how quantum experiments are carried out in general and
how the qubit’s statistical ensemble is explored in particular.
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The fiducial formalism presented in the previous chapters is inherent to the
physics of a qubit: it is complete and entirely physical without any admixture
of unnecessary meta-physics. It operates on directly measurable entities such as
probabilities and various quantites averaged over a statistical ensemble of a qubit.
It accounts for mixtures, fully polarized (pure) states, discrete energy spectrum of
a qubit, qubit precession, qubit flipping, and other effects – all within a simple
algebra of a conventional probability calculus and without ever having to resort
to the use of complex numbers, Hilbert spaces, probability amplitudes and other
powerful weapons from the armory of the traditional quantum mechanics. It would
make Ernst Mach exuberant.

This may come as a surprise to some physicists, because statements were some-
times made in the past about the impossibility of such a description1. Unfortunately
quantum mechanics is littered with various statements of this nature, made by some
very famous people that – in time – were demonstrated to be blatantly false2.

In spite of quantum mechanics’ great maturity, new and surprising results con- Quantum
mechanics
continues to
develop

tinue to pop up all the time. It was only in 1983 that Berry phase was discovered
[6], yet it is such a fundamental quantum effect. It was only in 1996 that a bi-qubit
separability criterion was discovered by Peres and Horodeckis [29] [46]. The obser-
vation that every quantum system and its evolution can be described entirely in
terms of probabilities and various physical parameters averaged over the statistical
ensemble of the system (such parameters are called expectation values) was pub-
lished as late as January 2000 [53] by Stefan Weigert of Université de Neuchâtel in
Switzerland. The specific observation that such a description can be formulated in
terms of a slightly generalized3 probability calculus is due to Lucien Hardy of The
Clarendon Laboratory in Oxford [26] and is even more recent.

In this chapter I am going to demonstrate that the probability calculus for a
single qubit maps naturally onto an even simpler type of calculus, for which we
will no longer need to bother about vectors and forms, because the state of a qubit
as well as its Hamiltonian form will map onto numbers – albeit of a rather special
type: quaternions.

1See, for example, [45] or [20]
2See, for example, [4] and [8]
3The generalization is confined to the separation between the number of degrees of freedom of

the system and the dimension of the system – in classical probability calculus these are the same,
in quantum probability calculus the number of degrees of freedom is equal to the square of the
dimension of the system.
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3.1 Hamilton quaternions

In order to map a vector or a form with four entries onto a number without the loss
of information, we must have numbers with four slots. Such numbers were invented
by an Irish mathematician, physicist and astronomer William Rowan Hamilton
(1805 - 1865) whose accomplishments and insights were so great that the most
important mathematical device of quantum physics, the Hamiltonian (we called it
the Hamiltonian form), was named after him.

Quaternions are similar to complex numbers, which have two slots. The slots ofSimilarity of
quaternions to
complex
numbers

a complex number are called real and imaginary . The imaginary slot is marked by
writing the letter i4 in front of it:

z = a+ ib

Quaternions have four slots, of which one is real and the remaining three are markedDefinition of a
quaternion by letters i, j and k:

q = a+ bi + cj + dk

The coefficients a, b, c, d are normally real, but complex number may be used in
their place too. We will see that even though complex numbers are deployed in the
mapping between fiducial vectors and forms and quaternions, their use is cosmetic
and dictated by tradition rather than necessity. Purely real number based mapping
can be used too with almost identical results.

The three imaginary units of the quaternion world have similar properties to theQuaternion
commutation
relations

imaginary unit of complex numbers, i.e.,

ii = jj = kk = −1

but there is one additional rule:
ijk = −1

from which the following can be derived:

ij = −ji = k

jk = −kj = i

ki = −ik = j

The derivation is quite simple. Consider for example

ij = −ij(kk) = −(ijk)k = k

4. . . or j if you are an electrical engineer.
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Now let us take

j(ii)j = −jj = 1 = (ji)(ij) = (ji)k

which implies that
ji = −k = −ij

In other words, quaternion imaginary units do not commute. They anti-commute
instead:

ij + ji
.= {i, j} = 0

and similarly for other pairs. The symbol {i, j} is called the anti-commutator. Quaternion
imaginary units
anti-commute3.2 Pauli quaternions

For historic reasons present day physicists do not use symbols i, j and k. Instead
they use different symbols5, namely: Quaternions

and Pauli
matricesσx = ii

σy = ij

σz = ik

where i is the complex numbers i, i.e.,
√−1 and whose resulting properties are: Pauli matrices

commutation
and anti-
commutation
relations

σxσx = σyσy = σzσz = 1

and

σxσy = −σyσx = (ii)(ij) = −k = iik = iσz

σyσz = −σzσy = iσx

σzσx = −σxσz = iσy

So to avoid a complete disconnect from the way everybody else does things in
physics, we’re going to use this notation too, even though it is somewhat clumsier
than the Hamilton quaternion notation used in mathematics.

Observe that I have used 1 (bold) instead of just 1. This is also due to

tradition. People who use σx, σy and σz instead of i, j and k like to think

of 1 as an identity matrix rather than a number. But we don’t have to do so,

neither do we need to look inside σx, σy and σz either, even though these

can be represented by matrices as well. To us they will be just 1, i, j and k

in disguise.

5. . . and in effect sometimes do not realize they work with quaternions.
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Pauli quaternion commutation rules can be usefully encapsulated into a single
expression:

σiσj = δij1 + i
∑

k

εijkσk (3.1)

where i, j and k run through x, y and z, δij is the Kronecker delta and εijk is the
Levi Civita tensor, sometimes also called the totally antisymmetric symbol. Indeed,
observe that for i = j we get δii = 1 but εiik = 0 for every k, and then

σiσi = 1

On the other hand for i 6= j we get δij = 0 but εijk = ±1 as long as k is different
from both i and j in which case the sign depends on the ordering of whatever i, j
and k stand for. In particular if i = x and j = y we get

σxσy = iεxyzσz = iσz

because εxyz is the only non-vanishing εxyk and it is equal to 1.

3.3 From fiducial vectors to quaternions

The mapping between fiducial vectors and quaternions is as simple as it can possibly
get. It is going to be linear and we are going to map:

ς1 → 1

ςx → σx

ςy → σy

ςz → σz

and. . . since there does not have to be a distinction between vectors and forms in
the quaternion world, after all they are all just numbers, we’re going to map fiducial
forms similarly:

ς1 → 1

ςx → σx

ςy → σy

ςz → σz

This way a fiducial vector of a qubit:

p =
1
2

(ς1 + rxςx + ryςy + rzςz)
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becomes
ρ =

1
2

(1 + rxσx + ryσy + rzσz)

and the Hamilton form:

η = −µ (Bxςx +Byςy +Bzς
z)

becomes
H = −µ (Bxσx +Byσy +Bzσz)

We are going to call the two quaternions defined this way, ρ and H, a density Density and
Hamiltonian
quaternions

quaternion and a Hamiltonian quaternion respectively and . . . temporarily. Tradi-
tional physics terminology is a little different, because most physicists don’t think
of these objects as quaternions. They think of them as operators instead and call
them a density operator and a Hamiltonian operator or a Hamiltonian for short. Density and

Hamiltonian
operators3.4 Expectation values

But how should we map the operation that yields the average energy of the ensem-
ble?

〈η,p〉 = −µ (Bxr
x +Byr

y +Bzr
z)

The simplest thing to try is to multiply the two quaternions and see what comes
out:

Hρ = −µ (Bxσx +Byσy +Bzσz)
1
2

(1 + rxσx + ryσy + rzσz)

= −µ
2

[
Bxσx +Byσy +Bzσz

+rx (Bxσx +Byσy +Bzσz) σx

+ry (Bxσx +Byσy +Bzσz) σy

+rz (Bxσx +Byσy +Bzσz) σz

]

= . . .

Remember that a square of each sigma is 1, whereas σiσj is some other sigma for
i 6= j. This makes it easy to collect terms that are proportional to 1:

. . . = −µ
2

[
(rxBx + ryBy + rzBz) 1

+ various terms multiplied by sigmas
]
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And so we find our solution 〈E〉 = −µ (r ·B) standing right next to 1. All we
need to do is to get rid of the remaining sigma terms. This is easy to do: we
simply introduce a projection operation that is going to extract a real part from< extracts the

real part of a
quaternion

the quaternion, similarly to how we extract a real part from a complex number.
Define:

< (q) = < (a1 + bσx + cσy + dσz) .= a

This way:〈E〉 = 2< (Hρ)
2< (Hρ) = −µ (r ·B) = 〈η,p〉 = 〈E〉

In a similar fashion we can obtain probabilities for finding a qubit in a spe-Extracting
fiducial vectors
from
quaternions

cific state, expressions that are expectation values of a sort too, from the density
quaternion ρ. Consider the following 4 quaternions:

P 0 =
1
2

(1 + σz)

P 1 =
1
2

(1− σz)

P 2 =
1
2

(1 + σx)

P 3 =
1
2

(1 + σy) (3.2)

First, observe that they are direct images of the canonical forms in the fiducial
space, when expressed in terms of Pauli forms (cf. equations 2.15 on page 64):

ω0 =
1
2

(
ς1 + ςz

)

ω1 =
1
2

(
ς1 − ςz

)

ω2 =
1
2

(
ς1 + ςx

)

ω3 =
1
2

(
ς1 + ςy

)

Let us apply, say, P 2 to ρ and then take 2< of the result:

P 2ρ =
1
2

(1 + σx)
1
2

(1 + rxσx + ryσy + rzσz)

=
1
4

(1 + rxσx + ryσy + rzσz + σx (1 + rxσx + ryσy + rzσz))

= . . .
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Now we are again going to collect terms that are proportional to 1. There is the
single 1 in front and then σxr

xσx is going to produce another 1. All other terms
will be multiplied by sigmas. So:

. . . =
1
4

(1 + rx1)

+ various terms multiplied by sigmas

And now taking 2< of it yields:

2< (
P 2ρ

)
=

1
2

(1 + rx)

In the same way one can easily see that:

2< (
P 0ρ

)
=

1
2

(1 + rz)

2< (
P 1ρ

)
=

1
2

(1− rz)

2< (
P 3ρ

)
=

1
2

(1 + ry)

We have arrived at the following formula that extracts probabilities from the density
quaternion of a qubit:

pi = 2< (
P iρ

)

Probabilities so obtained are consistent with our original mapping

ς1 → 1

ςx → σx

ςy → σy

ςz → σz

and show that the mapping can be reversed, i.e., in order to extract probabilities
from the density quaternion we can either use the P i quaternions and 2<, or we
can simply replace sigmas with varsigmas in the density quaternion and read the
probabilities this way.

Generally speaking, as we would represent any measurement on the quantum
system by a fiducial form, upon switching to the quaternion representation of the
system, we represent any measurement Q on the quantum system by a quaternion
Q and the result of this measurement in terms of Q averaged over the ensemble by:

〈Q〉 = 2< (Qρ)
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The formula pi = 2< (
P iρ

)
tells us how to reconstruct the fiducial vector p from

the density quaternion ρ. Is there an analogous formula that would generate the
form η̃ from the Hamilton quaternion H, without resorting to replacing sigmas
with the corresponding form-varsigmas?

Indeed, such a formula can be read out from 〈η,p〉 as follows:Extracting
fiducial forms
from
quaternions 〈E〉 = 〈η,p〉 =

∑

i

ηip
i =

∑

i

ηi2<
(
P iρ

)
= 2<

(∑

i

ηiP
iρ

)
= 2< (Hρ)

where we have made use of the fact that 2< is a linear operation. From this it is
now clear that

H =
∑

i

ηiP
i

So the way to read coefficients ηi is to express H not in terms of sigmas, but in
terms of P i instead!

Let us try it:

1 = P 0 + P 1

σz = P 0 − P 1

σx = 2P 2 − 1 = 2P 2 − P 0 − P 1

σy = 2P 3 − 1 = 2P 3 − P 0 − P 1

Substituting this in place of sigmas in

H = −µ(Bxσx +Byσy +Bzσz)

yields

H = −µ (
Bx

(
2P 2 − P 0 − P 1

)
+By

(
2P 3 − P 0 − P 1

)
+Bz

(
P 0 − P 1

))

= −µ (
(Bz −Bx −By) P 0 − (Bz +Bx +By) P 1 + 2BxP 2 + 2ByP 3

)

and so we get

η0 = Bz −Bx −By

η1 = −Bz −Bx −By

η2 = 2Bx

η3 = 2By
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which is consistent with η = Bxςx +Byςy +Bzς
z, where

ςx ≡ (−1,−1, 2, 0)

ςy ≡ (−1,−1, 0, 2)

ςz ≡ (1,−1, 0, 0)

3.5 Mixtures

Now that we know how to switch between quaternions and vectors and forms of
the fiducial space of a qubit, let us try to express some ideas we explored in the
previous chapter in the pure quaternion language.

The first of these is going to be constructing a mixture of pure states. A pure
state is described by a vector r with length 1. Within the fiducial formalism we
constructed a mixture by taking a convex linear combination of two or more pure
states represented by probability vectors, e.g., p1 and p2:

p = a1p1 + a2p2,

where a1 + a2 = 1

Since the mapping between fiducial vectors and quaternions is linear, the same Mixing density
quaternionsshould hold for the density quaternion ρ:

ρ = a1ρ1 + a2ρ2

= a1
1
2

(1 + rx
1σx + ry

1σy + rz
1σz) + a2

1
2

(1 + rx
2σx + ry

2σy + rz
2σz)

=
1
2

((a1 + a2)1 + (a1r
x
1 + a2r

x
2 )σx + (a1r

y
1 + a2r

y
2)σy + (a1r

z
1 + a2r

z
2)σz)

Since a1 + a2 = 1 the first term in the large brackets, (a1 + a2)1 becomes 1. The
remaining three sigma terms become rxσx + ryσy + rzσz, where

r = a1r1 + a2r2

and

r · r = (a1r1 + a2r2) · (a1r1 + a2r2)

= a2
1 + a2

2 + 2a1a2 cos(r1, r2)

≤ a2
1 + a2

2 + 2a1a2 = (a1 + a2)2 = 1

This is the same result we obtained previously for the mixture of two fiducial
vectors.
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3.6 Qubit evolution

The qubit evolution equation that had the following form in the fiducial formalism

d
dt

p =
1
2~
〈η ⊗ p̃, ε〉

and that eventually transformed into an easier readable

d
dt

r =
2µ
~

r ×B

has the following quaternion formulation:Von Neumann
equation

d
dt

ρ = − i
~

[H,ρ] (3.3)

where
[H,ρ] .= Hρ− ρH

is called the commutator of H and ρ. Written in this form the qubit evolution equa-
tion is called the Schrödinger-Pauli-von-Neumann equation, or just von Neumann
equation for short.

To transform this equation back into dp/dt = 〈η ⊗ p̃, ε〉/2~ calls for a certain
amount of tedious algebraic equilibristics, but its transformation into dr/dt =
2µ r ×B/~ is quite simple.

First consider the left hand side of the von Neumann equation.

d
dt

ρ =
1
2

d
dt

(1 + rxσx + ryσy + rzσz)

=
1
2

((
d
dt
rx

)
σx +

(
d
dt
ry

)
σy +

(
d
dt
rz

)
σz

)

=
1
2

(
d
dt

r

)
· ~σ

because 1, σx, σy and σz are all constants.

The symbol ~σ is a tri-vector of the three sigmas: σx, σy and σz. Expres-The meaning of
~σ sions such as vxσx + vyσy + vzσz occur so often that a typographic shortcut

v ·~σ was invented. But this should not be understood as a real scalar product

of two vectors in which infomation is lost. Rather it should be understood as

something similar to vxex + vyey + vzez
.
= v · ~e. Here no information is lost

as the operation is performed. There are three fully extractable components

of v on both sides of the equation.
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Now let us turn to the commutator:

Hρ− ρH

= −µ
2

[
(Bxσx +Byσy +Bzσz) (1 + rxσx + ryσy + rzσz)

− (1 + rxσx + ryσy + rzσz) (Bxσx +Byσy +Bzσz)
]

. . .

Before we plunge into the fury of computation, let us have a sanguine look at the
equation first. To begin with we are going to have terms resulting from multipli-
cation of the Hamilton quaternion by the 1 of the density quaternion. These will
produce B · ~σ from Hρ and −B · ~σ from −ρH, so they’ll cancel in effect. Next
we’re going to have terms resulting from σi, i = x, y, z multiplying itself, i.e., σxσx,
etc. For each sigma σiσi = 1, so these terms are going to produce B · r 1 from
Hρ, which is exactly what we had in 2< (Hρ), and −B · r 1 from ρH, so they’ll
cancel too.

The only terms that are going to survive then will be the asymmetric terms:

. . . = −µ
2

[(
Bxr

yσxσy +Bxr
zσxσz

+Byr
xσyσx +Byr

zσyσz

+Bzr
xσzσx +Bzr

yσzσy

)

−(
Bxr

yσyσx +Bxr
zσzσx

+Byr
xσxσy +Byr

zσzσy

+Bzr
xσxσz +Bzr

yσyσz

)]

= . . .

Observe that the expression in the second round bracket is the same as the expres-
sion in the first round bracket but with sigmas ordered the other way. Switching
them around produces minus, which cancels with the minus of the commutator, so
that we end up with:

. . . = −µ
2

2
(
Bxr

yσxσy +Bxr
zσxσz

+Byr
xσyσx +Byr

zσyσz

+Bzr
xσzσx +Bzr

yσzσy

)

= . . .
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But here in this expression we also have sigma pairs that are just switched around.
Reordering them “the right way” will produce minuses, so that we’ll end up with

. . . = −µ
[

(Bxr
y −Byr

x) σxσy

+ (Byr
z −Bzr

y) σyσz

+ (Bzr
x −Bxr

z) σzσx

]

= . . .

Finally, let us replace σxσy with iσz, and similarly for the other two pairs to get:

. . . = −iµ
[

(Bxr
y −Byr

x) σz + (Byr
z −Bzr

y) σx + (Bzr
x −Bxr

z) σy

]

= . . .

Observe that the expressions in the round brackets are components of a vector
product B × r. We can therefore rewrite our result in a more compact form as:

[H,ρ] = −iµ (B × r) · ~σ

And so the von Neumann equation for the quaternion-described qubit turns into:

1
2

(
d
dt

r

)
· ~σ = − i

~
(−iµ) (B × r) · ~σ

which then yields
d
dt

r =
2µ
~

r ×B

3.7 Why does it work?

Before I attempt to answer this question, let me first explain that all that we’ve
done with the sigma-quaternions used by the physicists we could have done just as
easily with the original Hamilton (i, j,k)-quaternions. The imaginary unit, i, that
pops up in the von-Neumann equation is there only because of the way we defined
the sigmas as i times Hamilton quaternions i, j or k and does not really represent
anything deep or fundamental. It is merely ornamental and rather misleading.

If we were to use the original Hamilton quaternions, our equations would lookThere is no need
for i =

√−1
when using
Hamilton
quaternions

very similar with only a sign different here or there and without any imaginary
units. For example, if we were to map:

ς1 ↔ 1
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ςx ↔ i

ςy ↔ j

ςz ↔ k

we would get:
〈η,p〉 = −2< (Hρ)

But we could be a little fancier here and we could, for example, map forms onto Forms could be
mapped on
conjugate
quaternions

conjugate quaternions, e.g.,

η = Bxςx +Byςy +Bzς
z → −Bxi−Byj −Bzk

and this would yield
〈E〉 = 2< (Hρ)

The von-Neumann equation in the Hamilton quaternion formalism and with
forms mapped onto normal quaternions, not the conjugate ones, is:

d
dt

ρ =
1
~

[H,ρ]

there is no i here and no minus either. The minus could be restored by mapping
fiducial forms onto conjugate quaternions instead.

So, whether we use sigmas or i, j and k we get much the same picture - and we
still don’t have to do our quantum mechanics with complex numbers.

Now, why does the quaternion trick work? The reason for this is that quaternions
are general and powerful and their peculiar commutation properties encode both a
scalar product (or a dot product as some call it) and a vector product. Consider
this:

ab = (axi + ayj + azk) (bxi + byj + bzk)

= (axbx + ayby + azbz) (−1)

+ [(aybz − azby) jk + (azbx − axbz) ki + (axby − aybx) ij]

= −~a ·~b+
(
~a×~b

)x

i +
(
~a×~b

)y

j +
(
~a×~b

)z

k

So this is where all the magic comes from. To extract the scalar product from Quaternions
encode a dot
and a cross
product of two
vectors in a
single
expression

the quaternion we can either just take the real part of it, the <, and multiply by
whatever coefficient is needed to get the right answer, or we could take ab+ba and
then the (i, j,k)-part of the quaternion would cancel out. To extract the vector
product from the quaternion we could simply extract the coefficients that multiply
i, j and k or we could take ab− ba and then the real part of the quaternion, the
scalar product part, would cancel out.



104 Chapter 3

To extract the coefficients that multiply i, j and k we can use operators

similar to <. A complex number operator that extracts the imaginary com-

ponent of a complex number is called =. But in case of the quaternions we

need three such operators, and so we’re going to call them =i, =j , and =k.

Consequently any theory that contains a combination of scalar and vector prod-Any three-
dimensional
theory can be
mapped onto
quaternions

ucts can be mapped onto quaternions and special quaternion rules devised to extract
whatever equations of the original theory are wanted.

Quaternions simply encode elementary 3-dimensional vector algebra in the form
of “numbers” with 4 slots each.

For this reason Hamilton was able to encode rotations and their combinations byQuaternions
were invented to
describe
rotations

using quaternions – this is, in fact, what he invented them for. Various equations
of special and even general relativity can be mapped onto quaternion algebra too.

Our theory of qubits that describes their statistical ensembles in terms of prob-
ability vectors eventually resolves to scalar and vector products, such as 〈E〉 =
−µ (r ·B) and dr/dt = 2µ (r ×B) /~ – and so, it is only natural that a mapping
should exist that lets us express it in terms of quaternions.

That a mapping comes out to be so simple, with Pauli vectors and forms mapping
directly onto 1 (or 1) and (i, j,k) (or (σx,σy,σz)) derives from the fact that I had
defined ς1, ςx, ςy and ςz so that this would be the case – knowing in advance the
result I wanted to achieve.

But I didn’t cheat. p = 1
2 (ς1 + rxςx + ryςy + rzςz) indeed fully describes a

qubit state, meaning a state of a statistical ensemble that represents it.
A more profound question should be, why

p =
1
2




1 + rz

1− rz

1 + rx

1 + ry




works.
The reason why this works is because it is so general.
The first two entries in p represent the fact that a beam of qubits splits inA fiducial vector

of a qubit is the
most general
probability
vector with 4
slots and with
the first two
slots
normalized.

two in the presence of a magnetic field that has a non-vanishing gradient in the
z direction. Individual qubits must go either up or down. Tertium non datur.
This exhausts all possibilities. Consequently p0 + p1 = 1. To express p0 and p1

as (1 + rz)/2 and (1− rz)/2 with rz ∈ [0, 1] merely parametrizes this observation.
But the experiment also tells us that the description of a qubit in terms of rz alone
is incomplete. Knowing p0 and p1 is not enough to fully describe the state of a
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qubit. In order to fully describe the qubit we must know how it is going to behave
in magnetic fields whose gradients are in the x and y directions too. Hence the
additional two terms, which are similarly parametrized by rx and ry.

Contrary to what some physicists think and say, a qubit can be polarized in any
direction in the 3-dimensional space. This can be always confirmed by moving a
magnet in all possible directions until the beam of qubits no longer splits and all
qubits in it are deflected in the same direction – that corresponds to r. Such a
direction can be always found, if a beam is fully polarized. If such a direction does
not exist, the beam is not fully polarized. It is a mixture.

So we come to a surprising conclusion: the reason why p describes a qubit is
simply because it has enough slots to do so. The reason why quaternions describe
a qubit is because they are general and flexible enough to fit any theory that has
scalar and vector products in it.

An astute reader may stop me here and ask: “OK about p and quaternions, but
what about dr/dt = 2µ (r ×B) /~ and 〈E〉 = −µ r ·B? Why do these work?”

This is indeed where the real physics is. What these equations say is that a A qubit behaves
like a classical
magnetic dipole
on average.

qubit behaves on average like a classical magnetic dipole. This on average behav-
ior represents the classical thermodynamic limit of the theory. If you immerse a
macroscopic sample full of qubits in a magnetic field B, you will be able to observe
a precession of the average magnetic field of the sample exactly as described by
dr/dt = 2µ (r ×B) /~. You will be able to observe other effects we discussed in
the previous sections too.

This, in quick summary, is all that quantum mechanics can say about a qubit:
that a beam of qubits splits in two in the presence of varying magnetic fields,
and that an ensemble of identically prepared fully polarized qubits behaves like a
classical magnetic dipole on average.

Quantum mechanics is a probability theory. All its pronouncements refer only to
statistical ensembles of quantum objects. Quantum mechanics has nothing what-
soever to say about a particular individual quantum object – unless in very special
and rare circumstances when a behavior of the whole ensemble can be predicted
with 100% certainty. In this case only we can be certain about what an individual
quantum object is going to do.
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The so called unitary description of qubits is what arises when the σx, σy and
σz quaternions are “unpacked” into matrices.

Why should we bother about unpacking them in the first place, if we can

obtain all the information we need directly from the quaternion picture, or

by using fiducial vectors and forms? This is indeed a very good question.

It translates into another even more profound question. Since the fiducial

formalism and its mapping onto quaternions – otherwise known as the density

operator formalism – already cover all qubit physics, what new physics can we

possibly arrive at by unpacking the sigmas? Are we merely going to delude

ourselves with unnecessary metaphysics? This question latches directly onto

the business of quantum computing, because the whole idea indeed derives

from the notation of the unitary calculus.

What do we mean by “unpacking the sigmas”? We are going to look for matrix Matrix
representation
of quaternions

representations of sigmas that have the same commutation and anti-commutation
properties, namely:

σ2
x = σ2

y = σ2
z = 1

σxσyσz = i1

The other sigma properties, e.g., σxσy = −σyσx = iσz, can be derived from the
two, as we have seen done with the Hamilton quaternions i, j and k – and we are
going to help ourselves with these too.

4.1 Pauli matrices

It is easy to see that we cannot represent the sigmas by numbers alone, real or com-
plex, because the sigmas anti-commute and neither real nor complex numbers do.
But matrices do not commute in general either and so the simplest representation
of sigmas can be sought in the form of 2× 2 matrices. Because we have the i, the
imaginary unit, in our commutation relations for sigmas, we will have to consider
2×2 complex matrices. Pure real matrices will no longer do, because how would we
generate the i. Also it will become clear, after we will have completed the exercise,
that if we were to use the Hamilton’s original i, j, and k symbols instead, we would
still end up with complex matrices.
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Let us begin with the following general parametrization of 2× 2 matrices

σx =
(
a11 a12

a21 a22

)

σy =
(
b11 b12
b21 b22

)

σz =
(
c11 c12
c21 c22

)

where aij , bij and cij are some complex numbers.
The first rule that applies equally to all sigmas is that they square to 1. Let us

perform the corresponding computation on σz:

σzσz =
(
c11 c12
c21 c22

)(
c11 c12
c21 c22

)

=
(
c211 + c12c21 c12 (c11 + c22)
c21 (c11 + c22) c222 + c12c21

)

=
(

1 0
0 1

)

This yields the following two groups of equations:

c12 (c11 + c22) = 0

c21 (c11 + c22) = 0

and

c211 + c12c21 = 1

c222 + c12c21 = 1

The first two equations can be satisfied by either

c11 = −c22

or by
c12 = c21 = 0

Suppose the latter holds. In this case we get that

c211 = c222 = 1
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which implies that
c11 = ±1 = c22

We therefore end up with two possibilities:

σz = ±
(

1 0
0 1

)
, or

σz = ±
(

1 0
0 −1

)

The first solution is just 1. This is not a good solution here, because we want
σz to be something other than 1, so we’re going to take the second one, and we’re
going to choose the plus sign for it:

σz =
(

1 0
0 −1

)

Observe that in this case we ended up with both

c12 = c21 = 0

and
c11 = −c22

Even though we were prepared to be more general. The other solution in this group,
resulting from the generality, was 1.

For the remaining two matrices, σx and σy we have to choose the other option,
i.e.,

a12 6= 0 and

a21 6= 0

and similarly for σy and the bs, because otherwise we’d end up with either 1 or(
1 0
0 −1

)
again. But if a12 6= 0 and a21 6= 0 then we must have

a11 = −a22
.= a and

b11 = −b22 .= b

where a and b are such that

a2 + a12a21 = 1 and

b2 + b12b21 = 1
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Now let us make use of the anti-commutation rule σxσz + σzσx = 0. First we
have:

σxσz =
(

a a12

a21 −a
)(

1 0
0 −1

)

=
(

a −a12

a21 a

)

but

σzσx =
(

1 0
0 −1

)(
a a12

a21 −a
)

=
(

a a12

−a21 a

)

Adding these two yields

σxσz + σzσx = 2
(
a 0
0 a

)

For the anti-commutation rule to hold a must be zero. Since the same argument is
going to work for σy as well we get

a = 0 and

b = 0

In summary:

σx =
(

0 a12

a21 0

)

σy =
(

0 b12
b21 0

)

But recall that as a and b vanish we are left with

a12a21 = 1 and

b12b21 = 1

We can easily satisfy these equations by setting a12 = x and a21 = 1/x and similarly
b12 = y and b21 = 1/y, so that

σx =
(

0 x
x−1 0

)

σy =
(

0 y
y−1 0

)
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Now we are ready to make use of the rule stating that

σxσyσz = i1

Substituting our matrix expressions for σx, σy and σz yields:
(

0 x
x−1 0

)(
0 y
y−1 0

)(
1 0
0 −1

)

=
(
x/y 0
0 −y/x

)
=

(
i 0
0 i

)

This yields the following 2 equations in combination with what we have arrived at
already:

x/y = i

−y/x = i

both of which solve to
y = −ix

Since 1/y = 1/(−ix) = ix−1 we end up with

σx =
(

0 x
x−1 0

)
(4.1)

σy =
(

0 −ix
ix−1 0

)
(4.2)

σz =
(

1 0
0 −1

)

However surprising this may be to some physicists on account of the x factor it is
very easy to check, e.g., with Maple or Mathematica or manually even, that these
matrices indeed satisfy all quaternion relations expected of σx, σy and σz, which is
sufficient to get the right expressions for 〈E〉 = −µ (r ·B) via the 〈E〉 = 2< (Hρ)
and for dr/dt = 2µ (r× B) /~ via the dρ/dt = −i [H,ρ] /~.

The choice of x = 1 is a natural one in this context – though not strictly necessary
at this stage. But it makes σx pleasingly symmetric and σy pleasingly Hermitian,
i.e., such that Aij = A∗ji and both properties will prove useful as we go along.

Hermitian matrices are of special importance in quantum physics. We will Hermitian
matricessee on page 125 that x will be further restricted to eiφx , so that σy, even with

this remaining degree of freedom left, will end up being Hermitian anyway –
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as will σx. The condition Aij = A∗ji says that if you transpose a Hermitian
matrix A and then complex conjugate it, the resulting matrix is the same as
the original one: “

AT
”∗

= A

There is a special symbol, † that represents this, so called, Hermitian conju-Hermitian
conjugation gation:

A†
.
=
“
AT
”∗

(4.3)

Using this symbol we can say that operator A is Hermitian when

A† = A

Having made this choice, and we are not going to forget about it, instead working
on its further justification as we develop the unitary formalism, we arrive at thePauli matrices
quaternion representation in terms of Pauli matrices:

1 =
(

1 0
0 1

)
(4.4)

σx =
(

0 1
1 0

)
(4.5)

σy =
(

0 −i
i 0

)
(4.6)

σz =
(

1 0
0 −1

)
(4.7)

It is useful to express the canonical basis in the space of 2× 2 matrices in terms of
Pauli matrices – a procedure somewhat similar to what we did earlier with canonical
forms in the fiducial space and Pauli forms (cf. equations 2.15 on page 64). And
so:

M0 =
(

1 0
0 0

)
=

1
2

(1 + σz)

M1 =
(

0 1
0 0

)
=

1
2

(σx + iσy)

M2 =
(

0 0
1 0

)
=

1
2

(σx − iσy)

M3 =
(

0 0
0 1

)
=

1
2

(1− σz) (4.8)
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Note that only M0 and M3 bear similarity to P 0 and P 1 of equations 3.2 on page
96. Matrix representations of P 2 and P 3 are

P 2 =
1
2

(
1 1
1 1

)

P 3 =
1
2

(
1 −i
i 1

)

Observe that all three sigmas are traceless, i.e., such that the sum of their diag- Pauli matrices
are tracelessonal elements is zero. The only matrix here that has a non-vanishing trace of 2 is

1. We can therefore use the matrix operation of taking trace, Tr, in place of the
quaternion operation <. Also note that since Tr (1) = 2 we can drop the 2 factor
that appeared in front of <, i.e.,

2< (Hρ) = Tr (Hρ)

It is this Tr (1) = 2 in fact that is responsible for some of the 1/2s and 2s that
appear in definitions of our probability vector and its close cousin, the density
quaternion, as well as in the definitions of Pauli forms and of the metric tensor of
the fiducial space.

Of the three Pauli matrices one is imaginary, the σy. Could we do away with
imaginary numbers if we were to carry out the procedure for Hamilton quaternions
i, j, and k? The answer is “no”, we wouldn’t do better. Recall that

i = −iσx

j = −iσy

k = −iσz

This transformation would make j real, but then we’d end up with imaginary i and
k.

If we were to substitute aij , bij and cij , as we did previously, for i, j and k,
equation kk = −1 would yield:

c12 (c11 + c22) = 0

c21 (c11 + c22) = 0

as before, but this time

c211 + c12c21 = −1

c222 + c12c21 = −1
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In case c12 = c21 = 0 we get that c211 = −1 and c222 = −1, which implies c11 = ±i =
c22 right away.

In summary, whereas we can describe qubit dynamics and kinematics completelyThere is no real
2× 2
representation
of quaternions

in terms of real numbers and measurable probabilities alone, as long as we work
either within the fiducial formalism or within the density quaternion framework, the
moment we “unpack” the quaternions we have to let imaginary numbers through
this back-door.

Like Alice falling into the rabbit hole, we are going to encounter some very strange
creatures and notions, some of which may well belong in the fantasy world.

4.2 The basis vectors and the Hilbert space

A fully unpacked density quaternion of a qubit becomes a 2 × 2 complex matrix
that looks as followsDensity matrix

ρ =
1
2

(1 + rxσx + ryσy + rzσz) =
1
2

(
1 + rz rx − iry

rx + iry 1− rz

)
(4.9)

and in this form it is called a density operator or a density matrix of a qubit.
We had seen an operator P in section 1.8 (page 32) that talked about “Transfor-

mations of mixtures” represented as a sum of tensor products of basis vectors and
forms, where the vectors and forms were ordered “the other way round” so that
they wouldn’t eat each other:

P
.=

∑

j

∑

i

pj
iej ⊗ ωi

This trick can be applied to every linear operator that is represented by a matrix,
including ρ, and in this case we can write:

ρ =
1
2

(
(1 + rz) e0 ⊗ ω0 + (rx − iry) e0 ⊗ ω1

+ (rx + iry) e1 ⊗ ω0 + (1− rz) e1 ⊗ ω1
)

where ei and ωi are basis vectors and forms in this new 2-dimensional complex
vector space into which we have unpacked our quaternions. What they are will
transpire when we have a closer look at some specific qubit states we know and
understand well by now.

Consider first a state that is described by

r =




0
0
1


 ,
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or, in other words, by r = ez, where ez is a unit-length vector that points in the
z direction, i.e., vertically up. This is a fully polarized, i.e., pure state. Its fiducial
representation is p = 1

2 (ς1 + ςz), its quaternion representation is ρ = 1
2 (1 + σz)

and its density matrix representation is

ρ =
(

1 0
0 0

)
= e0 ⊗ ω0

This tells us that the pair e0 and ω0 can be employed to represent the r = ez state. e0 and ω0

represents the
r = ez state.

We encountered this state in section 2.3 (page 52) that talked about polarized states
and on that occasion we called it |↑〉. We are going to adopt the same notation
here including the complementary notation for the ω0 form, namely:

e0
.= |↑〉

ω0 .= 〈↑|
Let us call the corresponding density operator ρ↑, to distinguish it from density
operators that will describe other states, and we can write:

ρ↑ = |↑〉 ⊗ 〈↑|
or

ρ↑ = |↑〉〈↑| (4.10)

for short. Quantum physics researchers often drop the tensor product symbol ⊗1. ρ↑ = |↑〉〈↑|
Vector |↑〉 and its matching form 〈↑| can be also described in terms of columns

and rows of numbers, namely:

e0
.= |↑〉 .=

(
1
0

)

ω0 .= 〈↑| .= (1, 0)

e0 ⊗ ω0 =
(

1
0

)
(1, 0) =

(
1 0
0 0

)

The latter is a genuine matrix multiplication, i.e., multiplying a column vector by a
row one, with the column vector on the left side of the row, and applying the usual
matrix multiplication rules, builds up the 2× 2 matrix that is in this case ρ↑. Also
observe that 〈↑|↑〉 = 1

〈↑|↑〉 = 〈ω0,e0〉 = (1, 0)
(

1
0

)
= 1

which is as it should be, because ω0 is dual to e0.

The terminology of a form and a vector adopted in this text is relatively Forms, bras and
rows versus
vectors, kets
and columns

1Some aren’t even aware of its existence!
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new to mathematics and newer still to physics (although it goes back a long

way, at least to Cartan if not before). When Dirac invented his angular

bracket notation used in quantum mechanics today, he called what we call

vectors here ket vectors and he called what we call forms here bra vectors.

This way a conjugation of a form and a vector, e.g., 〈↑|↓〉, becomes a bra-

ket . Einstein and his differential geometry colleagues, on the other hand,

called forms covariant vectors and vectors contravariant vectors, because form

coefficients transform like basis vectors and vector coefficients transform the

other way round. Finally, people who work with computers prefer to call forms

row vectors and they call vectors column vectors. All these terminologies

are still in use today, depending on who you talk to, and sometimes even

depending on a context.

Now consider a state that is given by

r =




0
0
−1




or, in other words, by r = −ez. This is also a fully polarized state whose fidu-
cial representation is p = 1

2 (ς1 − ςz) and whose quaternion representation is ρ =
1
2 (1− σz). Its density matrix representation is

ρ =
(

0 0
0 1

)
= e1 ⊗ ω1

This tells us that the pair e1 and ω1 can be used to represent the r = −ez state.
We encountered this state in section 2.3 too and called it |↓〉 back then. So, we are
going to adopt this notation here as well together with the complementary notation
for its dual form:

e1
.= |↓〉

ω1 .= 〈↓|
Let us call the corresponding density operator ρ↓. We can now write:ρ↓ = |↓〉〈↓|

ρ↓ = |↓〉 ⊗ 〈↓| or simply ρ↓ = |↓〉〈↓| (4.11)

Vector |↓〉 and its dual form 〈↓| can be described in terms of columns and rows of
numbers as follows:

e1
.= |↓〉 .=

(
0
1

)
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ω1
.= 〈↓| .= (0, 1)

e1 ⊗ ω1 =
(

0
1

)
(0, 1) =

(
0 0
0 1

)

where the latter, as before, is a genuine matrix multiplication. Since |↓〉 and 〈↓| are
dual, we have that 〈↓|↓〉 = 1

〈↓|↓〉 = 1

But we also have

〈↓|↑〉 = (0, 1)
(

1
0

)
= 0

and 〈↓|↑〉 = 〈↑|↓〉 =
0〈↑|↓〉 = (1, 0)

(
0
1

)
= 0

And so we find that the two vectors, |↑〉 and |↓〉, comprise a basis of the 2-
dimensional complex vector space in which ρ↑ and ρ↓ operate – once we have
replaced the quaternion symbols σx, σy and σz with Pauli matrices2.

The vector space spanned by |↓〉 and |↑〉 is called the Hilbert space of a qubit. Hilbert space of
a qubitApart from being a complex vector space and, in this case, 2-dimensional, it has

some other properties that make it Hilbert and we’re going to discover them one
by one as we explore it.

Observe that vectors |↑〉 and |↓〉 also correspond to the physical basis states of
the qubit, in the sense that was discussed in sections 1.5 (page 19) and 2.2 (page
46).

4.3 The superstition of superposition

What about qubit states such as |→〉 and | ⊗〉, states that correspond to polariza-
tion directions that are perpendicular to ez? They are after all perfectly normal
qubit beam states that can be confirmed by orienting the beam splitting magnet
appropriately. Have they been excluded from the unitary formalism?

Since they can be described in terms of fiducial vectors, and therefore in terms
of quaternions too, it should be possible to describe them within the framework of

2. . . which are also called σx, σy and σz . Whenever there is a possibility of confusion I
will attempt to clarify whether the sigmas employed in various formulas should be thought of
as quaternion symbols or matrices. The general rule is that if we operate on sigmas using their
commutation and anticommutation properties only, they are quaternions. If we unpack them and
use their matrix properties, they are Pauli matrices. Physicists call them Pauli matrices in all
contexts.
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the unitary formalism, even though the only basis vectors that we can build our
vector space from correspond to |↑〉 and |↓〉.

Consider a density matrix that corresponds to r = ex. The state is described by
p = 1

2 (ς1 + ςx) or by ρ = 1
2 (1 + σx). Unpon having unpacked σx we find:

ρ→ =
1
2

(
1 1
1 1

)

=
1
2

(|↑〉 ⊗ 〈↑| + |↑〉 ⊗ 〈↓| + |↓〉 ⊗ 〈↑| + |↓〉 ⊗ 〈↓|)

=
1√
2

(|↑〉+ |↓〉)⊗ 1√
2

(〈↑| + 〈↓|) (4.12)

We can therefore write this very peculiar expression:|→〉 is a
superposition of
|↑〉 and |↓〉 |→〉 =

1√
2

(|↑〉+ |↓〉)

Similarly, for the qubit state that corresponds to r = −ex we get

ρ← =
1
2

(
1 −1
−1 1

)

=
1
2

(|↑〉 ⊗ 〈↑| − |↑〉 ⊗ 〈↓| − |↓〉 ⊗ 〈↑| + |↓〉 ⊗ 〈↓|)

=
1√
2

(|↑〉− |↓〉)⊗ 1√
2

(〈↑| − 〈↓|)

Hence|←〉 is also a
superposition of
|↑〉 and |↓〉

|←〉 =
1√
2

(|↑〉− |↓〉)

States | ⊗〉 and | ¯〉 that correspond do r = ey and r = −ey have similarly
peculiar representation in the unitary space of a qubit but with one subtle difference.
Let us start with | ⊗〉 = 1

2 (ς1 + ςy). The density matrix equivalent is:

ρ⊗ =
1
2

(
1 −i
i 1

)

=
1√
2

(|↑〉+ i |↓〉)⊗ 1√
2

(〈↑| − i 〈↓|)

At first glance it may look like we have a vector here and a form that are not
related, or not dual . But observe this:A form dual to

(|↑〉+ i |↓〉) /√2
is
(〈↑| − i 〈↓|) /√2
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1√
2

(〈↑| − i 〈↓|) 1√
2

(|↑〉+ i |↓〉)

=
1
2

(〈↑|↑〉+ i 〈↑|↓〉 − i 〈↓|↑〉+ 〈↓|↓〉)

=
1
2

(1 + i 0− i 0 + 1) = 1

This suggests that in this particular 2-dimensional vector space with complex co-
efficients, whenever we want to make a form out of a vector, we need to convert all
occurrences of i to −i. This is another feature of what’s called a Hilbert space. If In order to

make a dual
form in the
Hilbert space we
need to replace
the vector’s
coefficients with
their complex
conjugates and
then put the
vector on its
side.

you want to be one, it’s not enough to be just a complex vector space, you have to
have this property too. Furthermore if we have an operator A acting on a vector

The dual of
A | Ψ〉 is
〈Ψ | A†

| Ψ〉, namely A | Ψ〉, then the image of this operation in the form world is 〈Ψ | A†,
where † represents Hermitian conjugation defined by equation (4.3) on page 112.
Only if the operator is Hermitian, i.e., such that A = A†, we find that the dual of
A | Ψ〉 is 〈Ψ | A without the dagger.

In summary:

| ⊗〉 =
1√
2

(|↑〉+ i |↓〉) and

〈⊗ | =
1√
2

(〈↑| − i〈↓|)

And, without further calculation we can easily guess that

| ¯〉 =
1√
2

(|↑〉 − i |↓〉) and

〈¯ | =
1√
2

(〈↑| + i〈↓|)

What is the meaning of |→〉 = 1√
2

(|↑〉+ |↓〉)?
First observe that the plus operator, +, used in this context is not the same plus A plus in the

superposition
does not
translate into a
mixture of states

we used in adding probability vectors or their corresponding quaternions. Back
then adding two probability vectors of pure states (similarly for quaternions) would
always result in a mixed state, unless the constituents were one and the same state.
But here we add two pure states, which are not identical at all, and we end up
with another pure state. This addition of two vectors in the qubit’s Hilbert space,
which is called a superposition, does not map onto addition of the two probability
vectors, or quaternions. The transition

ρ→ →|→〉
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is clearly non linear.
The second thing to ponder on is that this notational trick not so much revealsThe unitary

formalism hides
states
perpendicular to
the basis states.

new physics, as hides some of what is transparent in the fiducial or quaternion
formalisms, namely polarization states that are perpendicular to ez. The real and
complete physics of a qubit in the |→〉 state is described by

p→ =
1
2

(ς1 + ςx) =




1/2
1/2
1

1/2




This vector says that if a beam of qubits in this state is sent through a magnetic
beam splitter with the magnetic field gradient pointing in the ez direction, then the
beam is going to split in half: one half of all incident qubits will swing upwards, the
other half will swing downwards. If the beam splitter is rotated so that its magnetic
field gradient points in the ey direction, again the beam is going to split in two equal
halves. But if the beam splitter is rotated so that its magnetic field gradient points
in the ex direction, then the beam is not going to split at all. Instead all qubits in
the beam will be deflected in the same direction. This last measurement therefore
confirms that the beam is polarized in the ex direction.

But people who get too obsessed with the notation of the unitary formalism have“Unitarists”
believe that a
qubit that is in
a superposition
of two states is
in both states
simultaneously.

a different interpretation of this state. They will say that |→〉 = 1√
2

(|↑〉+ |↓〉)
means that every qubit in the beam is simultaneously polarized in the ez direction
and in the −ez direction – and they will argue that this is what the experiment
shows: if you send a beam of qubits through the beam splitter oriented in the ez

direction, the beam splits in half – some qubits get deflected upwards, some get
deflected downwards.

There is a huge leap of faith (rather than science) in their argument combined
with emergency landing in thorny bushes of a religious dogma. First, they attribute
to every individual qubit what is clearly a property not of an individual qubit but
of a statistical ensemble of qubits. This is what every theory of probability is
all about and quantum mechanics of a qubit is merely a yet another theory of
probability. There is a certain probability that I may find a $100 bill on the floor
of the supermarket tomorrow. Does this mean that I half-have and half-not-have
this bill in my hand today? Does this mean that I have a certain proclivity towards
finding $100 bills on supermarket floors?

Second, they tend to forget about the option of rotating the beam splitter so
as to find a direction for which the beam no longer splits. This is because this
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possibility cannot be clearly and easily read from the unitary representation of the
state. It is there, but it’s hidden.

On the other hand, the interpretation that is read from the fiducial vector p or “Fiducialists”
believe that a
qubit that is in
a superposition
of two states is
in neither of the
states, instead it
is in a third
state that is
altogether
different.

from its equivalent quaternion ρ is that the qubits in the beam are neither polarized
in the ez direction, nor are they polarized in the −ez direction. They are polarized
in the ex direction instead, which is perpendicular to both ez and −ez. They are
going to be flipped onto either the ez or the −ez directions only when they are
measured with such probability as can be read from p or ρ.

It is not always easy to find a clear, physical interpretation of a quantum state
that is described by a linear combination of some basis vectors in the Hilbert space.
For example, what does |→〉 mean for the quantronium? But rather than saying
that the quantum object has all the constituent properties of a superposition, it is
probably better to say that it has neither of them, that its property is altogether
different. What it is exactly we’re not going to see until we switch back to the
density operator formalism (e.g., through the | Ψ〉 →| Ψ〉〈Ψ | operation) or even
better to the fiducial formalism (throuth the σi → ςi operation) and consider
probabilities of every experimental measurement needed to fully characterize the
state. It may sometimes happen that an investigated system, e.g., a quantronium, is
not equipped to carry out a full set of measurements and all it can deliver are p0 and
p1, but, at least in principle, p2 and p3 are there too and they can be detected with
appropriately improved measurement setup, or by more elaborate experimentation.
For example, Ramsey fringes generated by the quantronium demonstrated to us
the presence of Larmor precession, even though the quantronium does not have a
circuitry needed to measure p2 and p3.

N dimensional quantum systems, where N is the number of dimensions

of their corresponding Hilbert space map onto N2 dimensional fiducial sys-

tems [26]. Hence, the number of parameters needed to fully characterize a

quantum system grows very rapidly with the dimension of the system. This

is a practical reason why we often prefer to work within the confines of the

unitary formalism – especially for more complex systems. Whereas it is easy

to talk about p0, p1, p2 and p3 for a single qubit, if we were to consider an

8-qubit register, the number of dimensions of the corresponding Hilbert space

would be 28 = 256, but the number of dimensions of the corresponding fidu-

cial space would be 65,536. Consequently, even if the “Fiducialists” are right,

the “Unitarists” are more practical.

Consider a general superposition of the two Hilbert space basis vectors |↑〉 and Fiducial vector
of a general
state in the
qubit’s Hilbert
space
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|↓〉:
| x〉 = a |↑〉 + b |↓〉

where a and b are two complex numbers. We can convert this vector to its corre-
sponding density matrix by constructing the form

〈x |= a∗ 〈↑| + b∗ 〈↓|

where the asterisk denotes complex conjugation, i.e., i→ −i, and then by building
an operator out of the two:

| x〉〈x |= aa∗ |↑〉〈↑| + ab∗ |↑〉〈↓| + ba∗ |↓〉〈↑| + bb∗ |↓〉〈↓|

Let us compare this to the general form of the density matrix as obtained from
the quaternion representation in order to find how the full information about the
state of the polarization of the qubit beam is hidden in the unitary formalism’s
superposition:

aa∗ =
1
2

(1 + rz)

bb∗ =
1
2

(1− rz)

ab∗ =
1
2

(rx − iry)

ba∗ =
1
2

(rx + iry)

Adding the first two equations yields an interesting condition:

aa∗ + bb∗ = 1

This tells us that we cannot construct just any linear combinations of |↑〉 and
|↓〉. The combinations that are physically meaningful are restricted to such that
aa∗ + bb∗ = 1. This is called a normalization condition. All Hilbert space vectorsPhysically

meaningful
Hilbert space
vectors must be
normalized

that correspond to physical states of a qubit must satisfy it.
Also observe that aa∗ = 1

2 (1 + rz) = p0 is the probability of registering the
qubit with its spin up and bb∗ = 1

2 (1− rz) = p1 is the probability of registering
the qubit with its spin down. The normalization condition is therefore the same as
p0 + p1 = 1.

Subtracting the second equation from the first one yields

aa∗ − bb∗ = rz (4.13)
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We can extract rx and ry similarly from the third and the fourth equations:

ab∗ + ba∗ = rx and (4.14)

i (ab∗ − ba∗) = ry (4.15)

Now let us see if we can fill the whole Bloch ball with superpositions of |↑〉 and Only the Bloch
sphere, not the
full ball, can be
covered with
Hilbert space
states

|↓〉:

rxrx + ryry + rzrz

= (ab∗ + ba∗)2 + i2 (ab∗ − ba∗)2 + (aa∗ − bb∗)2
= (ab∗)2 + 2ab∗ba∗ + (ba∗)2

− (ab∗)2 + 2ab∗ba∗ − (ba∗)2

+ (aa∗)2 − 2aa∗bb∗ + (bb∗)2

= (aa∗)2 + 2aa∗bb∗ + (bb∗)2

= (aa∗ + bb∗)2

= 1

We can fill the Bloch sphere, but not the Bloch ball. In other words, the unitary
formalism is restricted to fully polarized beams only. We have no means to describe Mixtures of

quantum states
cannot be
described within
the confines of
the unitary
formalism

mixtures within the framework of this formalism. The unitary formalism represents
only a subset of the quantum probability theory and as such it seems incomplete.

This would be a high price to pay. If we cannot describe mixtures, we cannot
describe the process of the measurement, since, as we had seen in chapter 2, section
2.5 (page 59), the measurement process converted a pure state to a mixture.

Within the framework of the unitary formalism the measurement process has
been handled traditionally by introducing an auxiliary unphysical axiom. The
axiom is unphysical, because it elevates the measurement process above the theory
making it a special act, rather than a result of a physical interaction between a
measuring apparatus and an observed quantum system. Measurement in

the unitary
formalism

A similar problem would seem to affect our ability to describe the effects of the

Depolarization
in the unitary
formalism

interaction between an observed quantum system and the environment within the
framework of unitary formalism. We saw in section 2.11 (page 83) that talked about
the quantronium circuit that the qubit depolarized gradually. This manifested in
the diminishing amplitude of Rabi and Ramsey oscillations. The initially pure state
of the qubit converted into a mixture.
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But things are not so desperate and the unitary formalism is more useful than it
seems at first glance3.

The situation here is somewhat similar to the situation we encounter in investigat-
ing classical dissipative systems. There energy is obviously lost to the environment,
yet it does not mean that energy on the whole is not conserved. The energy may
leak from an observed subsystem, e.g., a damped oscillator, but we can recover it
eventually by including air and its expansion, friction, heat, as well as temperature
and lengthening of the spring in the model.

It is similarly with the unitary formalism. We will show in the next chapterDissipative
quantum
systems can be
embedded in
larger systems
that are unitary.

that a “dissipative”, i.e., a non-unitary quantum system can be always embedded
in a larger “non-dissipative” unitary system. This way, unitarity, like energy, is
“conserved” globally, even if it appears to leak out of the portion of the system
under observation. Careful analysis of what happens when a unitary quantum
system interacts with the environment lets us derive dissipative quantum equations
such as the Lindblad equation – its classical analog would be a Newton equation
with friction.

This mathematical trick leads some physicists to proclaim that the universe it-The universe as
a unitary
quantum system

self must be a quantum unitary system, but this is just a religious belief with no
grounding in observations or laboratory experiments. On the contrary, recent ob-
servations seem to suggest that gravity somehow leaks out of the universe (and
there is no convincing quantum theory of gravity to begin with), which manifests
in its accelerating expansion. If gravity can leak out, then why not energy and
why not unitarity? Although we know a great deal about the universe, there is
apparently much that we don’t know either.

Let us go back to the choice of x = 1 in equations (4.1) and (4.2) in sectionFurther
specification of
Pauli matrices

4.1 (page 111) and explain it some more.
Consider again equation (4.12) on page 118, but this time let us use

σx =

„
0 x

x−1 0

«

This would yield:

σ→ =
1

2

„
1 x

x−1 1

«

=
1

2

`|↑〉 ⊗ 〈↑| + x |↑〉 ⊗ 〈↓| + x−1 |↓〉 ⊗ 〈↑| + |↓〉 ⊗ 〈↓|´

3Not to mention the minor fact that nearly everything that’s been done in quantum mechanics
in the last 80 years or so was done with the unitary formalism.



The Unitary Formalism 125

To find a Hilbert space vector and its dual form that correspond to this opera-
tor we can try to match it against a tensor product of a general superposition
and its dual form:

(a |↑〉 + b |↓〉)⊗ (a∗ 〈↑| + b∗ 〈↓|)
= aa∗ |↑〉 ⊗ 〈↑| + ab∗ |↑〉 ⊗ 〈↓| + ba∗ |↓〉 ⊗ 〈↑| + bb∗ |↓〉 ⊗ 〈↓|

This yields the following equations:

aa∗ = |a|2 =
1

2
, hence |a| = 1√

2

bb∗ = |b|2 =
1

2
, hence |b| = 1√

2

ab∗ =
1

2
x (4.16)

ba∗ =
1

2
x−1 (4.17)

Let us use Euler notation for a and b, i.e.,

a = |a|eiφa and

b = |b|eiφb

then equations (4.16) and (4.17) become

ab∗ = |a||b|ei(φa−φb) =
1

2
ei(φa−φb) =

1

2
x

ba∗ = |b||a|ei(φb−φa) =
1

2
e−i(φa−φb) =

1

2
x−1

which yields
x = ei(φa−φb)

If we were to restrict ourselves to a real x, the only choice for us would be
x = ±1 and this would land us exactly where we are already with the only
freedom left as to the sign in front of the σx matrix. We could also make a
purely imaginary choice x = ±i, and this would merely swap σx and σy. A
non-trivial choice as to x is possible too. In this case x would have to be a
complex number of length 1 given by

x = eiφx (4.18)

Any other choice of x would make it impossible for us to recover the |→〉 state
within the resulting formalism, i.e., we could not identify a single Hilbert space
vector that would correspond to it.
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Observe also that choosing x = eiφx , which is the only choice we’re ulti-
mately left with, results in a Hermitian representation of σx and σy namely:

σx =

„
0 eiφx

e−iφx 0

«

σy =

„
0 −ieiφx

ie−iφx 0

«
=

„
0 ei(φx−π/2)

e−i(φx−π/2) 0

«

If we were to choose x = eiφx with φx 6= 0, the coefficients a and b in
|→〉 = a |↑〉 + b |↓〉 would have to be such that |a| = |b| = 1/

√
2 and

φa − φb = φx (4.19)

In particular, observe that for φx = 0, which is equivalent to our choice ofPhysical states
in the Hilbert
space are
defined up to a
constant phase
factor.

x = 1, we end up with φa = φb, but we are not forced to take φa = φb = 0.
This means that we can multiply the superposition by eiφa = eiφb = eiφ and
this is still going to yield the same physical state.

4.4 Probability amplitudes

A probability that a qubit that is in a pure state defined by r1, where r1 · r1 = 1,
is going to be filtered onto an “up” beam in some measuring apparatus is given by
p0 = (1 + rz

1) /2. What is a probability that the qubit is going to be filtered onto
an “up” beam in a differently oriented apparatus? Suppose that the orientation of
the apparatus is r2, where r2 ·r2 = 1. We can answer this question by rotating our
system of coordinates so that r2 = ez′ and now we have that p0′ =

(
1 + rz′

1

)
/2.

But what is rz′
1 ? Recall that rz = 〈ωz, r〉 = ez ·r. This holds for every orthonormal

basis ei, including the new basis defined by r2. Consequently rz′
1 = ez′ ·r1 = r2 ·r1.

The probability of a transition from a pure state that corresponds to r1 to a pure
state that corresponds to r2 is therefore:Probability of a

transition from
r1 to r2 pr2←r1 =

1
2

(1 + r2 · r1)

Let us digress here for a moment. The above formula is expressed in
terms of fiducial vector parametrizations. Can we express it instead in terms
of fiducial vectors themselves?

Let the two states be described by

p1 =
1

2
(ς1 + rx

1 ςx + ry
1ςy + rz

1ςz) and

p2 =
1

2
(ς1 + rx

2 ςx + ry
2ςy + rz

2ςz)
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Consider 〈p̃2, p1〉

〈p̃2, p1〉 =
1

4

˙
ς1 + rx

2 ςx + ry
2ςy + rz

2ςz, ς1 + rx
1 ςx + ry

1ςy + rz
1ςz

¸

=
1

4

`〈ς1, ς1〉+ rx
1 rx

2 〈ςx, ςx〉+ ry
1ry

2 〈ςy, ςy〉+ rz
1rz

2〈ςz, ςz〉
´

=
1

2
(1 + r1 · r2)

because 〈ςi, ςj〉 = 2δi
j . We will soon see that there is a very nice typographic

correspondence between
p2←1 = 〈p̃2, p1〉 (4.20)

and its unitary equivalent.

Although we have derived this formula for pure states only, it may be

extended to a situation in which r1 is any state, possibly a mixed one, and

r2 is pure. The latter is required, because in our derivation we really thought

of r2 as defining a direction and we made use of the fact that its length is 1

(when we equated r2 and ez′). But we never made any use of r1 being of

length 1.

Let us substitute the unitary description coefficients a1, b1, a2 and b2 in place of
rx
1 , ry

1 , rz
1 , rx

2 , ry
2 and rz

2 . Using equations (4.13), (4.14) and (4.15) yields

r2 · r1 = (a2b
∗
2 + b2a

∗
2) (a1b

∗
1 + b1a

∗
1)

− (a2b
∗
2 − b2a∗2) (a1b

∗
1 − b1a∗1)

+ (a2a
∗
2 − b2b∗2) (a1a

∗
1 − b1b∗1) (4.21)

Also recall that for every fully polarized state

aa∗ + bb∗ = 1

So we can replace the 1 in (1 + r2 · r1) with

1 = 1 · 1 = (a2a
∗
2 + b2b

∗
2) (a1a

∗
1 + b1b

∗
1) (4.22)

Let us now combine (4.21) and (4.22):

1 + r2 · r1

= (a2a
∗
2 + b2b

∗
2) (a1a

∗
1 + b1b

∗
1)

+ (a2b
∗
2 + b2a

∗
2) (a1b

∗
1 + b1a

∗
1)

− (a2b
∗
2 − b2a∗2) (a1b

∗
1 − b1a∗1)

+ (a2a
∗
2 − b2b∗2) (a1a

∗
1 − b1b∗1)
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Let us have a sanguine look at this equation. Observe that the first line is much
like the last one, but there are minuses in front of the b-terms in the last one. Also,
the third line is much like the second one, but again there are minuses in front of
the ba-terms. On the other hand there is a minus in front of the third line, so we
should really flip the minuses and the pluses inside it. All these minuses will result
in four merry cancellations, so that the final result will be left with 4 terms only.
And it’s easy to see what they’re going to be: The middle terms that result from
the full expansion of the first and the last line will drop out, and the edge terms
that result from the full expansion of the second and the third line will drop out
too, leaving us with

1 + r2 · r1 = 2a2a
∗
2a1a

∗
1 + 2b2b∗2b1b

∗
1 + 2a2b

∗
2b1a

∗
1 + 2b2a∗2a1b

∗
1 (4.23)

The 1/2 in front of 1
2 (1 + r2 · r1) will kill the 2-s in (4.23), and so we’re left with

pr2←r1 = a2a
∗
2a1a

∗
1 + b2b

∗
2b1b

∗
1 + a2b

∗
2b1a

∗
1 + b2a

∗
2a1b

∗
1

= (a∗2a1 + b∗2b1) (a2a
∗
1 + b2b

∗
1)

First, observe that the second component in this product is a complex conjugate of
the first component. Also observe that the first component is

a∗2a1 + b∗2b1 =
〈
a∗2〈↑ |+ b∗2〈↓ |

∣∣∣ a1| ↑〉+ b1| ↓〉
〉

= 〈Ψ2 | Ψ1〉

and the second component is

a2a
∗
1 + b2b

∗
1 =

〈
a∗1〈↑ |+ b∗1〈↓ |

∣∣∣ a2| ↑〉+ b2| ↓〉
〉

= 〈Ψ1 | Ψ2〉

And so, we have discovered that:〈Ψ2 | Ψ1〉 is the
probability
amplitude of
transition from
r1 to r2.

• 〈Ψ2 | Ψ1〉 = 〈Ψ1 | Ψ2〉∗ – this should not come as a surprise, because we
have already discovered that when converting a vector into its dual form we
needed to replace the vector coefficients with their complex conjugates. This
result is merely a consequence of this.

•
pr2←r1 = 〈p̃2,p1〉 = |〈Ψ2 | Ψ1〉|2 (4.24)

For this reason the complex number 〈Ψ2 | Ψ1〉 is called a probability amplitude for
the transition from | Ψ1〉 to | Ψ2〉. The tradition in quantum mechanics, that goes
back all the way to Dirac, is to write and read probability amplitude expressions
from right to left.
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A special case here are probability amplitudes for transitions to the basis states
〈↑| Ψ1〉 and 〈↓| Ψ1〉. These amplitudes are simply:

〈↑| Ψ1〉 =
〈
〈↑|

∣∣∣ a1 |↑〉+ b1 |↓〉
〉

= a1 (4.25)

〈↓| Ψ1〉 =
〈
〈↓|

∣∣∣ a1 |↑〉+ b1 |↓〉
〉

= b1 (4.26)

We can therefore write

| Ψ1〉 = |↑〉〈↑| Ψ1〉+ |↓〉〈↓| Ψ1〉
| Ψ2〉 = |↑〉〈↑| Ψ2〉+ |↓〉〈↓| Ψ2〉

〈Ψ2 | Ψ1〉 = 〈Ψ2 |↑〉〈↑| Ψ1〉+ 〈Ψ2 |↓〉〈↓| Ψ1〉

This last expression has a peculiar interpretation within the lore of quantum me-
chanics that derives from the “superstition of superposition”. It says that on its
way from | Ψ1〉 to | Ψ2〉 a qubit transits both through |↑〉 and |↓〉 at the same time,
as if splitting itself and being in these two states simultaneously. Well, as we have
seen before, a qubit that is described by | Ψ1〉 = a1 |↑〉+ b1 |↓〉 is neither in the |↑〉 More

superstitionstate nor in the |↓〉 state. It is in a different state altogether that is not clearly ex-
pressed by the unitary formalism, but, instead, it is hidden inside the two complex
numbers a1 and b1. This state can be always extracted by switching to the density
operator formalism and extracting probabilities of all required qubit characteristics
from it, or by juggling a1 and b1 following equations (4.13), (4.14) and (4.15).

The word “transition” hints at some “motion” with intermediate states in the
system. But when we think about a state of a qubit as polarization and then the
act of the measurement as filtration, there isn’t really any motion involved. Some
qubits get through the filter, some don’t. This is the same as filtering photons by
a polarizer plate. What is the actual mechanism involved in getting through the
filter and what it is exactly that happens to a qubit when it gets rejected, this
is something that quantum mechanics doesn’t really tell us much about. It is a
probability theory and as such it describes rather than explains4.

When contemplating quantum transitions, it is probably best to think of 〈Ψ2 |
Ψ1〉 as representing just such an act of filtration. The qubit does not really go
through |↑〉 and |↓〉 any more than it exists in the |↑〉 and the |↓〉 states at the same
time. These are just mathematical expressions written on paper that derive from

4This can be said about any other physics theory. Even though some of them may seem to
explain things, it is enough that a new, more accurate theory is discovered to relagate the old
one to a mere phenomenology. At the end of the day it is safer to leave the difference between
“describe” and “explain” to philosophers and focus on “predict” instead.
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the linearity of the theory. It is perhaps better to think of the qubit as ceasing to be
in the | Ψ1〉 state and re-appearing in the | Ψ2〉 state without anything in-between.
Its quantum mechanical “transition” is not continuous.

But one should not confuse transition probability amplitudes with a unitary
evolution of a qubit. The unitary Hamiltonian evolution is continuous. There are no
sudden jumps here. The transition amplitudes we talk about refer to probabilities of
registering the qubit in such or another state. They refer to the act of measurement,
the act that in itself is not unitary.

4.5 Spinors

How do qubit representations in the Hilbert space transform under the change of
the canonical basis in the qubit’s physical space?

To answer this question we must first answer another question. How do the
probabilities encapsulated in the qubit’s fiducial vector change in the same context?
The fiducial vector of a qubit is

p =
1
2




1 + rz

1− rz

1 + rx

1 + ry




The components rx, ry and rz depend on the specific choice of a basis in the qubit’s
3D space. This 3D space may be a geometric space, as is the case for, say, neutron
spin, or it may be some other more abstract space, as is the case for the quantronium
circuit. But mathematically they’re all the same: 3D real vector spaces.

We can rewrite p as follows

p =
1
2




1 + 〈ωz, r〉
1− 〈ωz, r〉
1 + 〈ωx, r〉
1 + 〈ωy, r〉


 =

1
2




1 + ez · r
1− ez · r
1 + ex · r
1 + ey · r




where ωi and ei, i = x, y, z are canonical basis forms and vectors, such that ez

points in the direction of the “magnetic field” used to measure the qubit.
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If we rotate the canonical basis so that ei → ei′ then p is going to change, but
r will remain the same, because it represents the qubit and its physics, neither of
which should depend on our choice of directions. Hence

p′ =
1
2




1 + ez′ · r
1− ez′ · r
1 + ex′ · r
1 + ey′ · r




represents the qubit in the same state r. The only thing that would have changed
is the way we look at it – through a different canonical basis ei′ in the qubit’s
physical space.

Suppose we rotate the basis by θ in the ex × ez plane as shown in figure 4.1.
The basis vectors ex, ez, ex′ and ez′ all have length 1. In this operation vector

--

6

6

*

*

K

K

x

z

x′

z′

θ

ex

ez

ex′
ez′

Figure 4.1: A counter-clockwise rotation of basis ei onto ei′ by angle θ.

ey remains unchanged, i.e., ey = ey′ . The new basis vectors ex′ and ez′ can be
expressed in terms of ex and ez, namely

ex′ = cos θ ex + sin θ ez (4.27)

ez′ = − sin θ ex + cos θ ez (4.28)
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The probability vector p is therefore going to change as follows

p′ =
1
2




1 + ez′ · r
1− ez′ · r
1 + ex′ · r
1 + ey′ · r


 =

1
2




1− sin θ rx + cos θ rz

1 + sin θ rx − cos θ rz

1 + cos θ rx + sin θ rz

1 + ry


 (4.29)

Let us focus on a very simple case. Suppose that r = ez (i.e., rx = ry = 0). The
unitary representation of this state is |↑〉. When looked at from the new basis ei′

the probability vector evaluates to:

p′ =
1
2




1 + cos θ
1− cos θ
1 + sin θ

1




In the unitary representation that corresponds to the primed basis, let’s call it |↑〉′
and |↓〉′, the state is going to be described by

|↑〉 = a |↑〉′ + b |↓〉′

where a and b must satisfy equations (4.13), (4.14) and (4.15) from page 122, as
well as the normalization condition. In this case

aa∗ + bb∗ = 1

aa∗ − bb∗ = rz′ = cos θ

ab∗ + ba∗ = rx′ = sin θ

i(ab∗ − ba∗) = ry′ = 0

The last condition tells us that ab∗ is real. This implies that a and b share the same
phase angle. But since Hilbert space vectors are defined up to a constant phase
factor anyway, we can just as well ignore this phase factor and assume that both a
and b are real. This greatly simplifies our algebra:

a2 + b2 = 1

a2 − b2 = rz′ = cos θ

2ab = rx′ = sin θ

From the normalization condition

b2 = 1− a2
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hence
a2 − b2 = 2a2 − 1 = cos θ

hence
a2 =

cos θ + 1
2

= cos2
θ

2
and

b2 = 1− a2 = 1− cos2
θ

2
= sin2 θ

2
In summary:

a = ± cos
θ

2
and b = ± sin

θ

2
How to choose the signs? For θ = 0 we must have

|↑〉 =|↑〉′

hence a = + cos θ
2 . Then the rx′ equation tells us that for small positive angles θ b

must have the same sign as a, consequently b = + sin θ
2 .

In summary

|↑〉 = cos
θ

2
|↑〉′ + sin

θ

2
|↓〉′ (4.30)

If r = −ez, then the reasoning is very similar, but we end up with minuses in
front of cos and sin in the rz′ and rx′ equations. The latter tells us that this time
a and b must be of the opposite sign, and the former selects sin for a, and so,
expecting that for θ = 0 we should have |↓〉 =|↓〉′ yields

|↓〉 = − sin
θ

2
|↑〉′ + cos

θ

2
|↓〉′ (4.31)

Observe that because |↑〉 and |↓〉 rotate by θ/2 when the physical basis of the
qubit rotates by θ we end up with something very strange when a full 360◦ rotation
is performed. This operation maps

|↑〉 → − |↑〉 and

|↓〉 → − |↓〉

This peculiarity is not physically observable, because in the corresponding proba-
bility transformation we have a full rotation by 360◦.

Geometric objects that tranform according to equations (4.30) and (4.31) when
the physical basis of the qubit is transformed according to equations (4.27) and
(4.28) are called spinors. We have therefore discovered in this section that the
unitary representation of qubits, the qubit Hilbert space, is made of spinors.
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Having established this, let us go back to equation (4.29) and work on it some
more. In general, a rotation of the canonical basis is described by an orthogonal
transformation Λ such that

ei′ =
∑

j

Λi′
jej and

ωi′ =
∑

j

ωjΛj
i′

where
∑

k′
Λi

k′Λk′
j = δi

j and

∑

k

Λi′
kΛk

j′ = δi′
j′

We have mentioned this already in section 1.7, page 28. In this more general case
equation (4.29) assumes the following form

p′ =
1
2




1 + 〈ωz′ , r〉
1− 〈ωz′ , r〉
1 + 〈ωx′ , r〉
1 + 〈ωy′ , r〉


 =

1
2




1 +
∑

i Λi
z′〈ωi, r〉

1−∑
i Λi

z′〈ωi, r〉
1 +

∑
i Λi

x′〈ωi, r〉
1 +

∑
i Λi

y′〈ωi, r〉


 =

1
2




1 +
∑

i Λi
z′ri

1−∑
i Λi

z′ri

1 +
∑

i Λi
x′ri

1 +
∑

i Λi
y′ri




Now we have to do something a little confusing. Vectors ei, i = x, y, z, and ei′ , i
′ =

x′, y′, z′, and their dual forms ωi and ωi′ operate in the physical 3D space. But in
the fiducial space we also have canonical vectors and forms we used to decompose
the fiducial vector p into its components. We called them ei, i = 0, 1, 2, 3 and
ωi, i = 0, 1, 2, 3. To avoid a clash of symbols we are going to mark them with a hat:

êi and ω̂i where i = 0, 1, 2, 3

Moreover, we’re going to use primed indexes for them in the expression below, be-
cause they refer here to measurements made with respect to the primed directions.
Using these we can rewrite our expression for p′ as follows:

p′ =
1
2

(
1 +

∑

i=x,y,z

Λi
z′ri


 ê0′ +


1−

∑

i=x,y,z

Λi
z′ri


 ê1′

+


1 +

∑

i=x,y,z

Λi
x′ri


 ê2′ +


1 +

∑

i=x,y,z

Λi
y′ri


 ê3′

)
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Now recall equations (2.12), page 63, namely

ê0′ =
1
2

(ς1′ + ςz′ − ςx′ − ςy′)

ê1′ =
1
2

(ς1′ − ςz′ − ςx′ − ςy′)

ê2′ = ςx′

ê3′ = ςy′

Using these we can replace êi with varsigmas, which yields

p′ =
1
2

(
ς1′ +

∑

i=x,y,z

Λi
x′ri ςx′ +

∑

i=x,y,z

Λi
y′ri ςy′ +

∑

i=x,y,z

Λi
z′ri ςz′

)

This tells us that

rx′ =
∑

i=x,y,z

Λi
x′ri

ry′ =
∑

i=x,y,z

Λi
y′ri

rz′ =
∑

i=x,y,z

Λi
z′ri

which is what we knew all along, but we can rewrite this expression differently,
grouping the terms around rx, ry and rz instead of ςx′ , ςy′ and ςz′ and this time
we get:

p′ =
1
2


ς1′ + rx

∑

i′=x′,y′,z′
Λx

i′ςi′ + ry
∑

i′=x′,y′,z′
Λy

i′ςi′ + rz
∑

i′=x′,y′,z′
Λz

i′ςi′




and this tells us that

ςx =
∑

i′=x′,y′,z′
Λx

i′ςi′ (4.32)

ςy =
∑

i′=x′,y′,z′
Λy

i′ςi′ (4.33)

ςz =
∑

i′=x′,y′,z′
Λz

i′ςi′ (4.34)

meaning that the three varsigmas indexed with x, y and z transform like 3D vectors
under the rotation of the canonical basis in the qubit’s physical space, even though
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they have 4 components. The varsigmas are therefore very peculiar objects. They
stand with one leg in the qubit’s fiducial space and with the other one in the qubit’s
physical space. They are subject to transformations in both spaces.

To know that they transform like 3D vectors in response to rotations is going
to be very useful especially in more complicated situations, where we will have
probability matrices that cannot be decomposed into individual probability vectors.
Such situations will arise in multi-qubit systems.

4.6 Operators and operands

In the preceding sections of the chapter we managed to recover an image of pure
states (and pure states only) within the formalism of the qubit’s Hilbert space that
resulted from the unpacking of quaternion symbols into 2 × 2 complex matrices –
which, nota bene, all turned out to be Hermitian.

But so far it has only been the density quaternion, or the quaternion equivalent
of the probability vector in the fiducial space of a qubit, that we played with. What
about the other quaternion, the Hamiltonian?

Recall that
H = −µ (Bxσx +Byσy +Bzσz)

which translates into

H = −µ
(

Bz Bx − iBy

Bx + iBy −Bz

)
(4.35)

Now, since we can think of H as an operator , the obvious question to ask is, what
it does to the vectors of Hilbert space, we have identified in the previous sections.

First consider B = Bzez. For the Hamiltonian constructed from this field

H↑ |↑〉 = −µ
(
Bz 0
0 −Bz

)(
1
0

)
= −µBz

(
1
0

)
= −µBz |↑〉

Similarly

H↑ |↓〉 = −µ
(
Bz 0
0 −Bz

)(
0
1

)
= µBz

(
0
1

)
= µBz |↓〉

We discover that |↑〉 and |↓〉 are eigenvectors of H↑ and the corresponding eigen-|↑〉 and |↓〉 are
eigenvectors of
H↑ and the
respective
energies are the
eigenvalues.

values are expectation energies that correspond to these states. Recall that in this
case the fiducial formalism would have returned:

〈E↑〉 = 〈η↑,p↑〉 = 〈−µBzς
z,

1
2

(ς1 + ςz)〉 = −µBz
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because 〈ςz, ςz〉 = 2 and 〈ςz, ς1〉 = 0.
Similarly

〈E↓〉 = 〈η↑,p↓〉 = 〈−µBzς
z,

1
2

(ς1 − ςz)〉 = µBz

We have already introduced the notation |↑〉〈↑| and |↓〉〈↓| to describe ρ↑ and ρ↓
as tensor products of unitary vectors and forms, cf. equation (4.10), page 115, and
equation (4.11), page 116. In the matrix notation

|↑〉〈↑|=
(

1 0
0 0

)
and |↓〉〈↓|=

(
0 0
0 1

)

The Hamiltonian H↑ can therefore be described as

H↑ = −µBz |↑〉〈↑| +µBz |↓〉〈↓|

Measuring the energy of an individual qubit against this Hamiltonian returns either
−µBz, and in this case the qubit emerges in the |↑〉 state from the H↑ measur-
ing apparatus, or µBz, in which case the qubit emerges in the |↓〉 from the H↓
measuring apparatus. This we know from the experiment.

From the unitary point of view then, the measurement represented by H↑ per- Measurements
as projectionsformed on an individual qubit performs an act of projection. Whatever the state

of the qubit was originally, the measurement projects the qubit either on the |↑〉 or
on the |↓〉 state.

The operators |↑〉〈↑| and |↓〉〈↓| may be thought of as projectors: P ↑ and P ↓. Hamiltonian
eigenstates as
projection
operators

Hence the Hamiltonian itself becomes a linear combination of projections:

H↑ = −µBzP ↑ + µBzP ↓

The projectors have the following obvious properties

P ↑P ↓ = |↑〉〈↑|↓〉〈↓|= 0

P ↓P ↑ = |↓〉〈↓|↑〉〈↑|= 0

P ↑P ↑ = |↑〉〈↑|↑〉〈↑|= |↑〉〈↑|= P ↑
P ↓P ↓ = |↓〉〈↓|↓〉〈↓|= |↓〉〈↓|= P ↓

Also

P ↑ + P ↓ =
(

1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
= 1

We say that the projectors are orthogonal (because P ↑P ↓ = P ↓P ↑ = 0 – this is
what orthogonal means) and idempotent (because P ↑P ↑ = P ↑. and P ↓P ↓ = P ↓ –
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this is what idempotent means). We can combine these two properties into a single
equation, namely

P iP j = δijP i

where i ∈ {↑, ↓} 3 j. Also we say that the set of projectors is complete (because∑
i∈{↑,↓} P i = 1 – this is what complete means).
The measurement represented by H↑ defines a complete set of orthogonal pro-

jectors. This is true of any quantum measurement within the unitary formalism.
For an arbitrary superposition a |↑〉+ b |↓〉

H↑ (a |↑〉+ b |↓〉) = (−µBzP ↑ + µBzP ↓) (a |↑〉+ b |↓〉)

The first projector P ↑ kills |↓〉, but leaves |↑〉 intact, because it is a projector, and
the second projector P ↓ does the opposite. And so the result is

−µBza |↑〉+ µBzb |↓〉

Now let us zap this result from the left hand side with 〈Ψ |:〈Ψ |H↑ | Ψ〉 =
〈E〉

(a∗ 〈↑| + b∗ 〈↑|) (a(−µBz) |↑〉 + b(µBz) |↓〉)
= aa∗(−µBz) + bb∗(µBz)

=
1
2

(1 + rz) (−µBz) +
1
2

(1− rz) (µBz)

= −µBzrz

= 〈E〉

Is this a happy coincidence, or is there more to it? To answer this question we
should evaluate 〈Ψ |H | Ψ〉 for an arbitrary Hamiltonian H and an arbirary vector
| Ψ〉.

This transition amplitude, 〈Ψ |H | Ψ〉, can be understood as either 〈Ψ |
acting on H | Ψ〉, or as 〈Ψ | H† acting on | Ψ〉. Both yield the same result,

because H† = H.

But rather than plunge into the computation head first, we’ll begin by figuring
out how individual Pauli matrices affect the basis vectors of the Hilbert space. It
is easy to check that:

σx |↑〉 = |↓〉
σx |↓〉 = |↑〉
σy |↑〉 = i |↓〉
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σy |↓〉 = −i |↑〉
σz |↑〉 = |↑〉
σz |↓〉 = − |↓〉

Now we are ready to plunge:

−µ (Bxσx +Byσy +Bzσz) (a |↑〉 + b |↓〉)
= −µ (Bx (a |↓〉 + b |↑〉) +By (ia |↓〉 − ib |↑〉) +Bz (a |↑〉 − b |↓〉))

Now let us zap it from the left hand side with a∗ 〈↑| + b∗ 〈↓| remembering that
〈↑|↓〉 = 〈↓|↑〉 = 0. This results in:

−µ (Bx (a∗b+ b∗a) +Byi (b∗a− a∗b) +Bz (a∗a− b∗b))

But recall equations (4.14), (4.15) and (4.13) on page 123:

ab∗ + ba∗ = rx

i (ab∗ − ba∗) = ry

aa∗ − bb∗ = rz

Making use of these we get: 〈Ψ |H | Ψ〉 =
〈E〉

〈Ψ |H | Ψ〉 = −µ (Bxr
x +Byr

y +Bzr
z) = 〈E〉

This formula holds for any other Hermitian operator that represents some mea- Expectation
values in the
unitary
formalism

surable quantity. Summing up what we have learnt so far about fiducial, quaternion
and unitary pictures of quantum systems, we can write:

〈ηA,p〉 = 2< (Aρ) = Tr (Aρ) = 〈Ψ | A | Ψ〉 = 〈A〉

Let us still go back to the projection aspect of a measurement on a unitary state. How the
measurement
affects the
original pure
state.

Consider an experiment in which an energy measurement is performed on a state
| Ψ〉 = a |↑〉 + b |↓〉. This energy measurement may (and usually does) have a
side effect of splitting the incident beam of qubits so that all qubits in one beam
emerging from the measuring apparatus are |↑〉 and all qubits in the other beam
emerging from the measuring apparatus are |↓〉. The intensities of both beams
would be equal to I0a

∗a and I0b
∗b respectively, where I0 is the intensity of the

incident beam.
If we were to mix the two beams back together, we would end up with a mixture

of qubits in both states in the proportions corresponding to the beams intensities.
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Once the measurement has been performed the original pure state, the superposi-
tion, is destroyed – in general. But if we were to look at each of the two beams
in separation, we’d find that the qubits in them are all in pure states, namely |↑〉
in one and |↓〉 in the other, new states induced by the measurement, states that
incidentally are the eigenstates of the Hamiltonian.

These states are not P ↑ | Ψ〉 or P ↓ | Ψ〉, because the projections of | Ψ〉 are not
normalized, namely

P ↑ | Ψ〉 = a |↑〉 and

P ↓ | Ψ〉 = b |↓〉
How can we express the states that emerge from the measuring apparatus in terms
of the original | Ψ〉 and the projectors?

The expectation value of P ↑ is

〈Ψ | P ↑ | Ψ〉 = 〈Ψ | a |↑〉 = a∗a〈↑|↑〉 = a∗a = |a|2 = p↑

and similarly for P ↓:
〈Ψ | P ↓ | Ψ〉 = |b|2 = p↓

In other words, the expectation value of a projection operator P i is the probability
pi. Therefore

P ↑ | Ψ〉√〈Ψ | P ↑ | Ψ〉
=
|a|eiφa

|a| |↑〉 = eiφa |↑〉

which is |↑〉 up to the phase factor eiφa . Also

P ↓ | Ψ〉√〈Ψ | P ↓ | Ψ〉
=
|b|eiφb

|b| |↓〉 = eiφb |↓〉

The effect of the measurement performed by H = −µBzP ↑ + µBzP ↓ on | Ψ〉 then
is to produce two beams in states

P ↑ | Ψ〉√〈Ψ | P ↑ | Ψ〉
and

P ↓ | Ψ〉√〈Ψ | P ↓ | Ψ〉
(4.36)

with beam intensities equal to I0〈Ψ | P ↑ | Ψ〉 and I0〈Ψ | P ↓ | Ψ〉 respectively.
We can rewrite the above formula in terms of density operators. Let us consider

the outcome of the P ↑ operation first. Here we find that the state of qubits in the
beam produced by this projector is

P ↑ | Ψ〉√〈Ψ | P ↑ | Ψ〉
⊗ 〈Ψ | P †↑√〈Ψ | P ↑ | Ψ〉

=
P ↑ | Ψ〉〈Ψ | P †↑
〈Ψ | P ↑ | Ψ〉 =

P ↑ρP †↑
Tr (P ↑ρ)



The Unitary Formalism 141

Because 〈Ψ | P ↑ | Ψ〉 and Tr (P ↑ρ) are both the same thing, i.e., the expectation
value of P ↑ on ρ.

As the same holds for P ↓ we can restate equation (4.36) by saying that the effect
of the measurement performed by H = −µBzP ↑ + µBzP ↓ on ρ is to produce two
beams in states

P ↑ρP †↑
Tr (P ↑ρ)

and
P ↓ρP †↓

Tr (P ↓ρ)
(4.37)

Equations (4.37) are more general than equations (4.36), because they can be ap-
plied to mixed states as well. The projectors P i, however, are associated with pure
states only.

4.7 Properties of the density operator

Suppose we have an arbitrary 2 × 2 complex matrix ρ. We can ask ourselves a
question: when is this matrix a plausible density matrix? Being just 2 × 2 and
complex is clearly not enough.

We have answered this question implicitly by developing the whole formalism of
quantum mechanics from the probability side rather than from the unitary side,
arriving at the expression

ρ =
1
2

(1 + rxσx + ryσy + rzσz) (4.38)

where rx, ry and rz are parameters that define the probability vector p in such
a way that all its entries are guaranteed to be confined to [0, 1] and the first two
entries add up to 1.

In other words, we can say that if ρ can be written in the form (4.38) with rx, ry

and rz forming a 3-dimensional real vector of length less than or equal to 1, then
ρ is a plausible density matrix.

So, let us rephrase the original question as: “What general conditions does matrix
ρ have to satisfy to be rewritable in form (4.38)?

The first condition is obvious. Matrix ρ must be Hermitian. This is because all
Pauli matrices are Hermitian. If they weren’t Hermitian, they couldn’t represent
Pauli quaternions and we wouldn’t have the mapping from probabilities to 2 × 2
matrices via quaternions.

Since there are 3 linearly independent Pauli matrices plus the identity matrix,
together they constitute a basis in the space of 2× 2 complex Hermitian matrices.
Every 2× 2 Hermitian matrix must be of the form

ρ = a1 + bσx + cσy + dσz
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Now, in order to pin a to 1/2 we can simply request that Tr (ρ) = 1, because all
Pauli matrices are traceless and Tr(1) = 2.

But this still leaves too much freedom to possible values that b, c and d may
assume.

Recall that if ρ corresponds to a valid fiducial state p then for every other valid
pure qubit state pn defined by some direction n, where n · n = 1 we have that
(cf. equation (4.20), page 127)

ppn←p = 〈p̃n,p〉 = 〈p̃n〉p ∈ [0, 1]

It is convenient here to switch pn and p around, so that we consider

〈p̃,pn〉 = 〈p̃〉pn

instead. Since pn is a pure state we can always find such | Ψn〉 that the density
operator that corresponds to pn is | Ψn〉〈Ψn |. But this is our good old friend, the
projector, discussed at some length in section 4.6. Let us call this projector P n

rather than ρn then and using this notation we find that

〈p̃〉pn
= Tr (P nρ) = 〈Ψn | ρ | Ψn〉

Hence we get the following condition

∀n〈Ψn | ρ | Ψn〉 ∈ [0, 1]

This condition in a somewhat relaxed form

∀n〈Ψn | ρ | Ψn〉 ≥ 0 or ∀nTr (P nρ) ≥ 0 (4.39)

is referred to as positivity of the density matrix ρ.
It is easy to see that this condition is sufficient to enforce r · r ≤ 1.
Because ρ is Hermitian, it can be diagonalized by “rotating” the basis of the

Hilbert space, so that it aligns with the eigenvectors | ηi〉 of ρ. Strictly speaking
“rotations” in the Hilbert space are unitary operations. Now we can choose the
eigenvectors | ηi〉, i = 1, 2 of ρ as some of these | Ψn〉 vectors and for each of them
we still expect that

〈ηi | ρ | ηi〉 = ρi〈ηi | ηi〉 = ρi ∈ [0, 1]

where ρi are the eigenvalues of ρ. This implies that both eigenvalues of ρ must be
confined to [0, 1] too and they must add to 1 as well, otherwise the trace condition
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isn’t going to be satisfied. The determinant in this case, being a product of both
eigenvalues ρ1 and ρ2, must be positive.

Because the determinant is an invariant of unitary operations in the Hilbert
space, we see that the condition outlined above is captured by

det ρ ≥ 0

which must hold in any Hilbert space basis.
Recall equation (4.9), page 114. If we allow the ri coefficients to be anything, it

corresponds to our general matrix ρ with a = 1, which, as we saw above, derived
from the trace condition.

We can now use equation (4.9) to evaluate the determinant:

det ρ =
1
4

((1 + rz) (1− rz)− (rx + iry) (rx − iry))

=
1
4

(
1− (rz)2 − (rx)2 − (ry)2

)

=
1
4

(1− r · r) ≥ 0

which implies that
r · r ≤ 1

In summary the following three conditions characterize a plausible density matrix
ρ

1. Matrix ρ must be Hermitian.

2. The trace of ρ must be 1.

3. Matrix ρ must be positive, i.e.,

∀n〈Ψn | ρ | Ψn〉 ≥ 0 or ∀nTr (P nρ) ≥ 0

The positivity condition is not an easy condition to use in general, but if we can
show that at least one of the eigenvalues of ρ is negative, this disqualifies ρ from
being a plausible density matrix right away.

There is one more property that pertains to density operators of pure states only.
For such operators we find that

ρρ = ρ (4.40)

because these states are projectors.
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The proof that ρ of a pure state is idempotent is trivial on the unitary
level. Since for a pure state we have that

ρ =| Ψ〉〈Ψ |
we can easily see that

ρρ =| Ψ〉〈Ψ | · | Ψ〉〈Ψ |=| Ψ〉 (〈Ψ | Ψ〉) 〈Ψ |=| Ψ〉 (1) 〈Ψ |=| Ψ〉〈Ψ |= ρ

It is instructive to repeat this computation on the quaternion level, because
this is going to tell us something about the geometric significance of the
density operator’s idempotence. Consider ρ =

`
1 +

P
i riσi

´
/2, then

ρρ

=
1

2

 
1 +

X
i

riσi

!
· 1

2

 
1 +

X
j

rjσj

!

=
1

4

 
1 · 1 + 1 ·

X
j

rjσj +

 X
i

riσi

!
· 1 +

X
i

X
j

rirjσi · σj

!

=
1

4

 
1 + 2

X
j

riσi +
X

i

X
j

rirj

 
δij1 + i

X

k

εijkσk

!!

=
1

4

 
(1 + r · r) 1 + 2

X
i

riσi

!

because
P

i

P
j rirjεijk = 0 on account of rirj being symmetric and εijk

antisymmetric.
Observe that only when r · r = 1, i.e., only for pure states, do we end up

with

ρρ =
1

2

 
1 +

X
i

riσi

!
= ρ

otherwise r·r falls short, it does not reach the 1 and we end up with a deformed

quaternion that does not represent any state, because its real component is

less than 1/2.

Conditions 1 through 3 as well as the observation that a density operator of a
pure state is idempotent extend to quantum systems of dimensionality higher than
those of single qubits, for example to multi-qubit systems and even to infinitely
dimensional systems.

4.8 The Schrödinger equation

Like the fiducial vector of a qubit, p, and like its corresponding density quaternion
ρ a Hilbert space vector | Ψ〉, that describes a pure qubit state, evolves too in the
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presence of a “magnetic field” B. This evolution can be easily derived by taking
apart the von Neumann equation (3.3) discussed in section 3.6 on page 100:

d
dt

ρ = − i
~

[H,ρ]

The trick is to substitute Unpacking the
von Neumann
equation

ρ = | Ψ〉〈Ψ |
We don’t even have to split | Ψ〉 into a superposition. Consider first the left hand
side of the resulting equation:

d
dt

ρ =
d
dt

(| Ψ〉〈Ψ |) =
(

d
dt
| Ψ〉

)
〈Ψ | + | Ψ〉

(
d
dt
〈Ψ |

)

On the right hand side we have

− i
~

(H | Ψ〉〈Ψ | − | Ψ〉〈Ψ | H)

Combining the two we discover a sum of two equations:
(

d
dt
| Ψ〉

)
〈Ψ | = − i

~
(H | Ψ〉) 〈Ψ | and

| Ψ〉
(

d
dt
〈Ψ |

)
= | Ψ〉 i

~
(〈Ψ | H)

These two equations are duals of each other and they reduce to:

d
dt
| Ψ〉 = − i

~
H | Ψ〉 (4.41)

This is the celebrated Schrödinger equation for a qubit. Like the von Neumann Schrödinger
equationequation and its fiducial space equivalent this equation preserves the purity of the

state. We call this evolution unitary because it does not affect the length of the state
vector | Ψ〉, which remains 〈Ψ | Ψ〉 = 1, or. . . unity . The name “unitary” is also
used to describe the whole formalism that results from unpacking quaternions into
Pauli matrices and that represents quantum states by vectors in the Hilbert space
on which the matrices operate, rather than by density quaternions (or operators).
This formalism is the subject of this chapter.

Observe that H is the most general 2 × 2 Hermitian matrix. For such a Matrix H is
universal – it
describes all
2-dimensional
quantum
systems

matrix the diagonal elements must be real, because in this case Hij = H∗ji

implies Hii = H∗ii, and off diagonal elements must be complex conjugates of
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their mirror images across the diagonal. This leaves us with 4 independent
parameters and we find them all here in equation (4.35). Well, we actually find
only 3, but remember that H represents energy, and energy is only defined
up to an additive constant. We can therefore always choose the constant so
that H11 = −H22.

A Hamiltonian is responsible for a unitary evolution of a quantum system.
Because H is the most general 2 × 2 Hamiltonian possible this means that
any other quantum system characterized by two basis states only must be
described by a matrix that looks the same. The interpretation of vector B,
of course, differs from a system to a system, as does the intepretation of r,
but the equations and their solutions are identical.

This is why whether we talk about a quantronium or about a neutron spin,

two systems that couldn’t be more different at first glance, we end up with

exactly the same mathematics, the same dynamics and the same properties.

Whatever can be said about a neutron beam, translates immediately into

pronouncements that can be made about a statistical ensemble of quantroni-

ums, or two level molecules, or two level quantum dots, or any other two-level

quantum system.

4.8.1 General solution of the Schrödinger equation

Equation (4.41) can be solved quite easily for a general case of H. We are going to
solve it first for H = constant.

Consider a simple discrete approximation of the Schrödinger equation:

dH

dt
≈ | Ψ(t+ ∆t)〉− | Ψ(t)〉

∆t
= − i

~
H | Ψ(t)〉

We can extract | Ψ(t+ ∆t)〉 from it and this leads to the familiar Euler time step:Advancing the
Schrödinger
equation by a
single Euler
time step

| Ψ(t+ ∆t)〉 =| Ψ(t)〉 − i

~
H | Ψ(t)〉∆t

This equation tells us something quite insightful about the Schrödinger equation to
begin with. The Schrödinger equation basically represents the simplest evolution
possible. It says that evolved over a short time span ∆t vector | Ψ(t+ ∆t)〉 is going
to differ from the original vector | Ψ(t)〉 by a small linear correction − i

~H | Ψ(t)〉∆t.
There are no fancy second derivatives here as we have in the Newton’s equations,
no third derivatives as we have in the Lorentz-Abraham equations, no complicated
curvature terms and connection symbols as we have in the Einstein’s equations of
General Relativity. It is amazingly simple.

Let us use this insight to figure out how a quantum system is going to evolve
over a longer time stretch.
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Let us take t = 0 as our starting point. After a sufficiently short ∆t an initial
state | Ψ(0)〉 will evolve into

| Ψ(∆t)〉 =
(
1 +

1
i~

H∆t
)
| Ψ(0)〉

Having made this one time step, we can make another one, also of length ∆t:

| Ψ(2∆t)〉 =
(
1 +

1
i~

H∆t
)
| Ψ(∆t)〉

=
(
1 +

1
i~

H∆t
) (

1 +
1
i~

H∆t
)
| Ψ(0)〉

It is now clear that for every additional time step of length ∆t, we’re going to act on
the initial state | Ψ(0)〉 with a yet another instance of

(
1 + 1

i~H∆t
)
. In summary:

| Ψ(n∆t)〉 =
(
1 +

1
i~

H∆t
)n

| Ψ(0)〉

But n∆t = t, so Advancing the
Schrödinger
equation by
multiple Euler
time steps

| Ψ(t)〉 =
(
1 +

1
i~

H
t

n

)n

| Ψ(0)〉

This expression is approximate, because it results from taking n finite, though
small, time steps of length ∆t = t/n. Clearly, we can only get more accurate by
making ∆t = t/n smaller, which is the same as taking n larger, converging on the
exact solution for n→∞:

| Ψ(t)〉 = lim
n→∞

(
1 +

1
i~

H
t

n

)n

| Ψ(0)〉

This limit can be evaluated as follows. Recall the familiar Newton formula for
(a+ b)n:

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

We can use this formula here, because 1H = H1 (the derivation of the Newton
formula makes use of ab = ba), and this yields

(
1 +

Ht

i~n

)n

=
n∑

k=0

(
n

k

)
1n−k

(
Ht

i~n

)k
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Of course 1 applied any number of times is still 1, so we can drop it. We can also
unpack the

(
n
k

)
symbol and this is what we end up with:

(
1 +

Ht

i~n

)n

=
n∑

k=0

n!
k!(n− k)!

(
Ht

i~n

)k

Let us have a closer look at n!/(k!(n− k)!). This can be rewritten as:

(n− k + 1)(n− k + 2) . . . (n− k + k)
k!

We have clearly k terms in the numerator and they are all of the form (n −
something) with the exception of the last one, which is just n. If we were to
evaluate this we’d get

nk + nk−1 × something + nk−2 × something else + . . .

But observe that there is also nk in the denominator of (Ht/(i~n))k. For n →
∞ nk/nk = 1, but all the other terms like nk−1 × something/nk become zero.
Consequently we end up with:

lim
n→∞

(
1 +

Ht

i~n

)n

=
∞∑

k=0

1
k!

(
Ht

i~

)k

(4.42)

Ah, but this looks so much like ex, recall that

ex =
∞∑

k=0

xk

k!
(4.43)

Sure, we have just a plain number x in (4.43), but an operator Ht/(i~) in (4.42).
We know that en = e × e × . . . × e n-times. But what does eH mean? Well, it
means:

e−iHt/~ .=
∞∑

k=0

1
k!

(
Ht

i~

)k

This is how we define it and having done so we can write the general solution toGeneral solution
to the
Schrödinger
equation with a
constant
Hamiltonian

the Schrödinger equation for H = constant as:

| Ψ(t)〉 = e−iHt/~ | Ψ(0)〉 (4.44)

The matrix exponential eA does not always have the same properties as

Properties of
matrix
exponential

an ordinary number exponential ex. The reason for this is that matrices
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do not commute in general, whereas numbers (with the notable exception of
quaternions) do. In particular we cannot always write

eAeB = eA+B

This equation applies only when A and B commute, i.e., when AB = BA.
Of course, since A commutes with itself, we can always write

eaAebA = e(a+b)A

But other properties of the exponential, such as e0 = 1 and e−x = 1/ex still
hold with appropriate matrix substitutions for the inverse and for the 1:

e0 = 1“
eA
”−1

= e−A

The other very useful property is that when A and B are similar , i.e., such
that

B = M−1AM

where M is an arbitrary invertible matrix (sized so that the equation above
makes sense) then

eB = M−1eAM

This is very easy to see when you consider that

BB . . . B = M−1AMM−1AM . . . M−1AM = M−1AA . . . AM

The reason why this is such a useful property is that it lets us evaluate exp B

easily if B is diagonalizable, e.g., to A, because then exp A is a diagonal

matrix filled with exponentials of the diagonal terms of A.

But what if H is not constant, what if H = H(t)?
The problem is still tractable. Much depends on how H varies with t. Suppose General solution

to the
Schrödinger
equation with
time dependent
Hamiltonian

H is constant and equal to, say, H1 for t ∈ [0, t1], then H may change rapidly to
H2 for t ∈ ]t1, t2], and so on. The solution in this case will be

| Ψ(t)〉 = e−iH1t/~ | Ψ(0)〉 for t ∈ [0, t1]

| Ψ(t)〉 = e−iH2(t−t1)/~e−iH1t1/~ | Ψ(0)〉 for t ∈ ]t1, t2]

| Ψ(t)〉 = e−iH3(t−t2)/~e−iH2(t2−t1)/~e−iH1t1/~ | Ψ(0)〉 for t ∈ ]t2, t3]

. . .

and so on.
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Consider the Schrödinger equation with a time dependent Hamiltonian

i~ d

dt
| Ψ(t)〉 = H(t) | Ψ(t)〉

Let us chop time into small segments ∆t and let us assume that the Hamilto-
nian changes sufficiently slowly so that we can consider it constant within each
segment. Following the reasoning presented above we can write the solution
of this equation in the following form:

| Ψ(t)〉 = e−iH(t)∆t/~e−iH(t−∆t)∆t/~e−iH(t−2∆t)∆t/~

. . . e−iH(∆t)∆t/~e−iH(0)∆t/~ | Ψ(0)〉 (4.45)

Of course, eH1eH2 6= eH1+H2 , if H1 and H2 do not commute. But suppose
that the evolution of H(t) is such that [H(t1), H(t2)] = 0 for each t1 and t2.
In this happy case we are allowed to gather all the exponents into a sum:

| Ψ(t)〉 = e−i(H(t)+H(t−∆t)+H(t−2∆t)+...+H(∆t)+H(0))∆t/~ | Ψ(0)〉
The shorter the ∆t the more accurate the expression, so in the limit of ∆t→ 0
we get

| Ψ(t)〉 = e−i(
R t
0 H(t) dt)/~ | Ψ(0)〉 (4.46)

Expression such as exp (−iH∆t/~) represents a finite transformation of a quan-Unitarity of the
Schrödinger
evolution

tum system enacted by H that was applied to the system for the duration of ∆t.
It characteristic feature is that it does not affect the length of vector Ψ(t):

〈Ψ(∆t) | Ψ(∆t)〉 = 〈Ψ(0) | eiH†∆t/~e−iH∆t/~ | Ψ(0)〉

Recall that H is Hermitian, so that H† = H, hence

eiH†∆t/~e−iH∆t/~ = eiH∆t/~e−iH∆t/~ = ei(H−H)∆t/~ = e0 = 1

We could gather the exponents into a sum, because H commutes with itself. And
so in the end we get

〈Ψ(∆t) | Ψ(∆t)〉 = 〈Ψ(0) | Ψ(0)〉 (4.47)

A most general such operation, given by equation (4.45), is a superposition of
unitary operations and thus a unitary operation itself. Let us call it U(t), so that

| Ψ(t)〉 = U(t) | Ψ(0)〉

Its dual equivalent, U †(t), given by

U †(t) = eiH(0)∆t/~eiH(∆t)∆t/~

. . . eiH(t−2∆t)∆t/~eiH(t−∆t)∆t/~eiH(t)∆t/~
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evolves a form that is dual to vector | Ψ〉:
〈Ψ(t) |= 〈Ψ(0) | U †(t)

When put together, they annihilate each other from the middle onwards:

〈Ψ(t) | Ψ(t)〉 = 〈Ψ(0) | U †(t)U(t) | Ψ(0)〉
= 〈Ψ(0) | eiH(0)∆t/~eiH(∆t)∆t/~

. . .

(
eiH(t−2∆t)∆t/~

(
eiH(t−∆t)∆t/~

(
eiH(t)∆t/~e−iH(t)∆t/~

)

e−iH(t−∆t)∆t/~
)
e−iH(t−2∆t)∆t/~

)

. . . e−iH(∆t)∆t/~e−iH(0)∆t/~ | Ψ(0)〉
= 〈Ψ(0) | Ψ(0)〉

A qubit evolution operator U(t) can be represented by a 2 × 2 complex matrix.
These matrices have the following property:

U(t)U †(t) = 1, (4.48)

which we have just demonstrated. Matrices that satisfy this property are called
unitary , and the corresponding operators are called unitary operators. Hence the
name of the formalism.

Another way to look at the unitary operators is to observe that

U † = U−1,

that is, the Hermitian conjugate of U is its inverse.
Unitary operators are closely related to orthogonal operators, i.e., rotations and

reflections. Indeed, if U is real, then U † = UT and equation (4.48) becomes

U(t)UT (t) = 1,

which defines orthogonal operators.
A combination of U(t) and U †(t) is needed to evolve a density operator made of
| Ψ〉 and 〈Ψ |:

ρ(t) = | Ψ(t)〉〈Ψ(t) |
= U(t) | Ψ(0)〉〈Ψ(0) | U †(t)
= U(t)ρ(0)U †(t) (4.49)
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It is easy to get from here back to the von Neumann equation. Consider a short-
time-increment version of U , that is,

U(∆t) = 1 +
1
i~

H∆t, and

U †(∆t) = 1− 1
i~

H∆t,

where, again, we have made use of H = H†. Applying these to ρ(0) yields

ρ(∆t) = U(∆t)ρ(0)U †(∆t)

=
(
1 +

1
i~

H∆t
)

ρ(0)
(
1− 1

i~
H∆t

)

=
(

ρ(0) +
∆t
i~

Hρ(0)
)(

1− 1
i~

H∆t
)

= ρ(0) +
∆t
i~

Hρ(0)− ∆t
i~

ρ(0)H +O(∆t)2

≈ ρ(0) +
1
i~

[H,ρ(0)]

And this implies
ρ(∆t)− ρ(0)

∆t
=

1
i~

[H,ρ(0)] ,

which is a finite difference approximation of the von Neumann equation.
The 2×2 unitary operators U and U † are not Hermitian. Nevertheless, they can

be represented in terms of Pauli matrices, and mapped onto quaternions, assuming
that some of the coefficients are complex. For example, the small ∆t form of U for
a magnetized qubit is given by

U = 1 +
1
i~

H∆t

= 1− µ∆t
i~

(Bxσx +Byσy +Bzσz)

Together with U † they produce a small rotation of the polarization vector r by
ωL∆t about the direction of vector B, where ωL = 2µB

~ and B =
√
B2

x +B2
y +B2

z .
Each by itself produces a corresponding small “rotation” of the unitary equivalent
of r, either | Ψ〉 or 〈Ψ |, in the spinor space. Their compositions, (U(∆t))n, are
equivalent to multiple small rotations of r, and add up to large finite rotations of
r.

All that the unitary machinery of quantum mechanics can do to a single qubit is
to rotate its polarization vector r.
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4.8.2 Larmor precession revisited

Suppose | Ψn(0)〉 for n = 1, 2 are eigenstates of H. In this case

H | Ψn〉 = En | Ψn〉

Applying the Schrödinger equation to the eigenstates results in:

i~
d
dt
| Ψn(t)〉 = En | Ψn(t)〉

which has the simple solution Hamiltonian
eigenstates
“vibrate” with
eigenfrequency

| Ψn(t)〉 = e−iEnt/~ | Ψn(0)〉

This is a special case of the general solution given by equation (4.44) on page 148.
Each of the eigenstates appears to “vibrate” with its own eigenfrequency

ωn = En/~

The corresponding forms vibrate with the same frequencies but in the opposite
direction:

〈Ψn(t) |= 〈Ψn(0) | eiEnt/~

In all expressions of the kind 〈Ψ | H | Ψ〉 the two vibrations, that of the vector Undetectability
of
eigenfrequencies

and that of the form, cancel. Similarly, if you look at the density operator ρ = |
Ψ〉〈Ψ | the vibration terms cancel again, so the “vibrations” of the eigenvectors are
physically unobservable. The eigenstates just stay put and don’t change. In order
to force a change, e.g., to make the qubit flip, we have to use a different Hamiltonian
H1, such that the original eigenstates of H are no longer the eigenstates of H1.

But now consider a superposition of |↑〉 and |↓〉, for example Superpositions
of Hamiltonian
eigenstates
precess with
Larmor
frequency, which
corresponds to
the difference
between
eigenenergies.

|→〉 =
1√
2

(|↑〉+ |↓〉)

and assume that H = −µBzσz. Both |↑〉 and |↓〉 are the eigenstates of this
Hamiltonian, as we saw in section 4.6, page 136.

Each of the two eigenstates will evolve in its own way, independent of the other
one, because the Schrödinger equation is linear. If | Ψ(0)〉 = |→〉 then at some later
time t

| Ψ(t)〉 =
1√
2

(
eiµBzt/~ |↑〉+ e−iµBzt/~ |↓〉

)
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Let us invoke again equations (4.13), (4.14) and (4.15) from page 122, namely:

aa∗ − bb∗ = rz

ab∗ + ba∗ = rx

i (ab∗ − ba∗) = ry

Here a = 1√
2
eiµBzt/~ and b = 1√

2
e−iµBzt/~. The first thing we notice is that rz = 0,

so r remains in the plane perpendicular to ez. But

rx =
1
2

(
ei2µBzt/~ + e−i2µBzt/~

)
= cos

2µBzt

~
and

ry =
i

2

(
ei2µBzt/~ − e−i2µBzt/~

)
= − sin

2µBzt

~

We see that state |→〉 precesses about the z axis with Larmor frequency

ωL =
2µBz

~

In summary, even though the so called phase factors, with which the eigenstates
“vibrate”, namely exp (−iEnt/~), are invisible in isolation, they become detectable
in superpositions, where they manifest as Larmor precession.

Because our dynamic equation that described the evolution of qubit probabilities,Unitary
formalism hides
three-
dimensional
character of
qubits’
kinematics and
dynamics

and then its quaternion equivalent, the von Neumann equation that described the
evolution of the density quaternion were restricted to fully polarized states and did
not describe depolarization, they were, in fact, fully equivalent to the Schrödinger
equation. The unitary formalism reproduces all that we covered in our discussion
of qubit dynamics. The difference is that the unitary formalism hides vector r

inside the two complex coefficients a and b that multiply the two basis vectors of
the Hilbert space. People who look at superpositions such as a |↑〉 + b |↓〉 often
think of a and b as two real numbers and apply intuitions that pertain to real vector
spaces. But even with the normalization condition aa∗ + bb∗ = 1 imposed, there
are, in fact, three real numbers hidden inside a and b, not just two, and together
they encode the three-dimensionality of qubit kinematics and dynamics.

4.9 Single qubit gates

The highly suggestive qubit notation employed by the unitary formalism lets us
identify qubit states |↑〉 and |↓〉 with 0 and 1 of Boolean logic. But, of course, |↑〉
and |↓〉 are not 0 and 1. Generally, a qubit state | Ψ〉 corresponds to a 3-dimensional
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vector of length 1 (or of length that is no greater than 1 if we allow for mixtures)
that can point in any direction. This, as we have emphasized above, may not be
clear within the confines of the unitary formalism, because r is hidden inside a, a∗,
b and b∗, but it is there.

The Rabi oscillations discussed in chapter 2, section 2.10 on page 75 and then
illustrated with the example of a quantum circuit, the quantronium, discussed in
section 2.11 (page 83) provided us with an example of controllable driven evolution Driving qubit

evolutionof a qubit that did not result in depolarization – at least on paper, we had actually
seen depolarization in the quantronium example. The tip of the qubit’s vector r

drew a continuous line on the Bloch sphere in the course of the evolution. The
Rabi oscillations were slow compared to the Larmor precession. This was what
made them controllable and precise. For this reason the Rabi oscillations are a
preferred method for executing various computational operations on qubits. But it
is not impossible to use the controlled Larmor precession for this purpose, at least
in principle. By lowering the value of the magnetic field B‖ we can slow down the
pace of the Larmor precession to the point where it can be controllable.

The simplest logical operation is the not gate. We have analyzed it already in The not gate
section 2.10. But let us rehash the general idea here. Assume the qubit is in the
|↑〉 ≡ | 0〉 state originally and sits in the strong background field B‖ – storing its
computational value. In order to flip the qubit from | 0〉 to | 1〉 we can buzz it with
B⊥ = B⊥ (sinωLtex − cosωLtey), where ωL = 2µB‖/~, for π~/(2µB⊥) seconds
exactly. If the initial state of the qubit was |↓〉 ≡ | 1〉 the same operation would flip
it to | 0〉. This is what makes this operation a proper not gate: it has to do the
right thing for both | 0〉 and | 1〉 at the same time.

We can draw the following quantum circuit representations for the not gate. Diagrammatic
representation
of the not gate

| 0〉 - ¬ - | 1〉

| 1〉 - ¬ - | 0〉

Figure 4.2: Diagrammatic representation of the not gate.

The lines with arrows symbolize, say, a polarized neutron beam. The box la-
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beled with the logical not symbol, ¬, stands for, say, a chamber filled with the
combination of B⊥ and B‖ needed to perform the operation. The dimensions of
the chamber can be set so that, given the beam’s velocity v, the neutrons of the
beam would spend exactly the right amount of time in the chamber. We have used
the word say in order to emphasize that what the symbols drawn in figure 4.2
represent, depends on the particular implementation of the qubit.

The quantum not operation can be defined arithmetically tooArithmetic
definition of
not ¬ | 0〉 = | 1〉 (4.50)

¬ | 1〉 = | 0〉 (4.51)

In the world of classical physics this wouldn’t be enough to specify the
operation uniquely. Every rotation by 180◦ about an axis perpendicular to ez

could be used to implement the operation and there is an infinite number of
such axes bisecting the great circle of the Bloch sphere. But in the peculiar
world of quantum physics | 0〉 and | 1〉 are the physicsl basis states and basis
states in the Hilbert space of a qubit as well. This means that equations
(4.50) and (4.51) should also apply to superpositions of | 0〉 and | 1〉. Since
as we have seen in section 4.3 (page 117)

|→〉 =
1√
2

(| 0〉+ | 1〉)

|←〉 =
1√
2

(| 0〉− | 1〉)

This implies that both |→〉 and |←〉 are invariants of quantum not:|→〉 and |←〉
are invariants of
quantum not. ¬ |→〉 = ¬

„
1√
2

(| 0〉+ | 1〉)
«

=
1√
2

(¬ | 0〉+ ¬ | 1〉)

=
1√
2

(| 1〉+ | 0〉) = |→〉

and

¬ |←〉 = ¬
„

1√
2

(| 0〉− | 1〉)
«

=
1√
2

(¬ | 0〉 − ¬ | 1〉)

=
1√
2

(| 1〉− | 0〉) = − |←〉

The minus sign in front of |←〉 vanishes when we switch from the basis de-
scription of qubit states to fiducial vectors, so we can ignore it here. In other
words, we can say that quantum not leaves ex and −ex unchanged.

Similarly, it is easy to see thatQuantum not
swaps ey and
−ey.
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| ⊗〉 =
1√
2

(| 0〉+ i | 1〉〉)

| ¯〉 =
1√
2

(| 0〉 − i | 1〉〉)

which implies that

¬ | ⊗〉 = i | ¯〉
¬ | ¯〉 = −i | ⊗〉

We can again ignore the factors i and −i that appear in front of | ¯〉 and
| ⊗〉 on the right hand side of the equations above, because they vanish when
we switch to the fiducial vector formalism. What the above says, in effect, is
that quantum not switches ey to −ey and vice versa.

These two additional observations define quantum not uniquely as the Quantum not
is the rotation
by 180◦ about
ex.

rotation of the Bloch ball by 180◦ about ex and not some other axis.

Having narrowed the definition and implementation of quantum not so, we can

Square root of
not

define another quantum gate, which is called the square root of not. If instead of
rotating the Bloch ball by 180◦ about ex we were to rotate it by 90◦ only, we would
have to follow this operation with another rotation by 90◦ in order to complete the
not. This is shown in figure 4.3.

| 1〉 - √¬ - √¬ - | 0〉

| 0〉 - √¬ - √¬ - | 1〉

Figure 4.3: The square root of not.

The corresponding arithmetic definition of the square root of not is
√¬√¬ | 0〉 = | 1〉√¬√¬ | 1〉 = | 0〉

Now, if we can have the square root of not, could we have a non-trivial square
root of the identity? Such an operation is shown in figure 4.4. It is called the
Hadamard rotation after the French mathematician Jacques-Salomon Hadamard
(1865-1963). Hadamard

rotation,
HH = 1
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The Hadamard rotation H rotates the Bloch ball about the direction that bisects
the right angle between −ex and ez, as shown in figure 4.4, by 180◦. Because theHadamard

rotation swaps
ez and −ex.

direction of the axis of the Hadamard rotation is inclined by 45◦ with respect to
−ex and ez, the rotation swaps −ex and ez. The Hadamard rotation also swaps
−ez and ex. Repeating it twice restores the Bloch Ball to its original orientation,Hadamard

rotation swaps
−ez and ex.

hence HH = 1.

:ey

j

Y

ex

6

ez

?

K

U

h

Figure 4.4: The Hadamard rotation H rotates the Bloch ball about vector h, which
bisects the right angle between −ex and ez, by 180◦. This swaps −ez and ex. At
the same time, ez and −ex are swapped too. Applying H twice results in the
rotation by 360◦ about h, which brings the Bloch ball to its original orientation.

We can define the Hadamard rotation diagrammatically as shown in figure 4.5.
The arithmetic definition of the Hadamard rotation is as follows:

H | 0〉 =
1√
2

(| 0〉+ | 1〉)

H | 1〉 =
1√
2

(| 0〉− | 1〉)

It is easy to see both from figure 4.4 and from the following calculationHadamard
rotation swaps
ey and −ey.

that the Hadamard rotation swaps ey and −ey:

H | ⊗〉 = H
1√
2

(| 0〉+ i | 1〉)

=
1√
2

„
1√
2

(| 0〉+ | 1〉) +
i√
2

(| 0〉− | 1〉)
«
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| 1〉 - H - |←〉 = 1√
2

(| 0〉− | 1〉)

| 0〉 - H - |→〉 = 1√
2

(| 0〉+ | 1〉)

Figure 4.5: Diagrammatic representation of the Hadamard gate.

=
1√
2

„
1 + i√

2
| 0〉+

1− i√
2
| 1〉
«

=
1 + i√

2

1√
2

(| 0〉 − i | 1〉)

=
1 + i√

2
| ¯〉

As before we can ignore the factor (1 + i)/
√

2, because it vanishes in the

translation between the basis states and fiducial vector descriptions of the

qubit.

Operations such as the Hadamard rotation and the square root of not are a Similarity to
analog
computing

reflection of the fact that by using the controlled Larmor precessions about various
directions in space, or a combination of the Larmor precession and the Rabi oscilla-
tions we can do with a qubit all that we can do with a normal ball. We can rotate
its Bloch ball in any way we wish thus implementing an arbitrary continuous map-
ping between any two points on the Bloch sphere. By adding various dissipative
operations such as the measurement we can dig into the interior of the Bloch ball
too.

This makes the qubit a very rich object, markedly richer than its classical cousin,
the bit, which can only assume one of two discrete values. These riches resemble
analog, or fuzzy logic computing, where a computational element can assume any
real value within a certain range. Indeed, a classical ball, e.g., a ping-pong ball,
provides us with the computational equivalent of the qubit’s Bloch sphere.

The only snag is our inability to extract the full information about r from a Qubit states can
be ascertained
only by
exploring their
statistical
ensembles.

single measurement. In order to ascertain the state of the qubit we have to perform
a very large number of measurements on it, in other words, we have to fully explore
its statistical ensemble.

There are two fundamental ways to do this.
The first way is to work with a single qubit sequentially , as we have seen in the

Sequential
exploration of
the statistical
ensemble

quantronium example. We would prepare the qubit in some well defined initial
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state. Then we would perform some operations on the qubit and finally we would
send the qubit through the beam splitter in order to see if it emerges in state |↑〉 or
|↓〉. We would have to perform this procedure, for example 50,000 times, as was the
case in the quantronium example, in order go gather sufficient statistics that would
give us rz. We would then have to repeat all these operations without change but
on the output we would modify the beam splitting chamber so that the qubit would
emerge from it in state |→〉 or |←〉. After some 50,000 of such measurements we
would get a fair idea about rx. Then we would have to repeat this whole procedure
once more, but this time we would rotate the beam splitting apparatus so that the
qubit would emerge from it in state | ⊗〉 or | ¯〉, which, after sufficient statistics
had been collected, would yield ry.

The other way to approach the measurement of r is to work with millions, perhapsParallel
exploration of
the statistical
ensemble

even billions of identically prepared qubits and send them in the form of a particle
beam through various gates all at the same time. It will be then enough to rotate the
beam splitting apparatus in various ways and to measure output beam intensities
in order to reconstruct r. This is a quick and very accurate way of doing things,
because the large number of qubits ensures that we can average random errors away
and obtain very precise distributions. The underlying assumption here is that the
qubits do not interact with one another, or, if they do, that such interaction can
be averaged away too.

4.10 Taking qubits for a ride

So far our qubits were stationary. A qubit would hang somewhere suspended either
in a solution (this is how nuclear magnetic resonance experiments are carried out)
or drifting in vacuum (this would be a qubit trapped in a potential well, or a qubit
in a particle beam), or printed on a circuit board, and we would subject it to either
static or buzzing “magnetic field” in order to manipulate its quantum state.

But there are also other ways to manipulate qubits. For example, one may
subject a qubit to a sweeping magnetic field. Such magnetic field sweeps can beManipulating

qubits with rapid
magnetic field
sweeps

more precise and much faster than manipulating qubits gently by buzzing them
with weak magnetic oscillations. And speed matters for many reasons. Faster
gates mean faster computers for starters. But faster gates also mean that quantum
information can be processed before the qubits that the information is encoded
on decohere. Because of qubits’ great sensitivity to the environment, quantum
computing is always a race against time.

But in this section we are going to look at a yet another way of manipulating
qubits that is in itself very interesting and that may play a role in the future of
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quantum computing, although there hasn’t been much activity in this field yet. We
are going to take qubits for a ride. A slow ride in a parameter space.

In the process we are also going to exercise all that we have learnt in this

chapter: various formulas of the unitary formalism, whatever we learnt about

the Hamiltonian and its eigenstates, the Schrödinger equation, etc.

How would a qubit’s state change if we were to drag it from A to B along a
certain trajectory through space filled with a “magnetic” field B that varies from
location to location?

This question proved remarkably fruitful and it was only answered by Sir Michael
V. Berry of Bristol University in a paper he published in the Proceedings of the
Royal Society of London in 1984 [6]. For this achievement Berry was awarded
a prestigious Wolf Prize in 1998 together with Yakir Aharonov, who discovered a
related Aharonov-Bohm effect in 19595. But the Aharonov-Bohm effect was specific
to charged particles in the presence of the magnetic potential, whereas Berry effect
applies to every quantum system, electromagnetic or not. It applies to systems that
are not necessarily qubits too.

In practice moving a qubit physically from A to B is a difficult, if not impossible, Moving the
environment
around a qubit
is equivalent to
moving the qubit
itself.

endeavour. Qubits are extremely delicate, so there is no way to move them, even
touch them, without destroying their quantum state at the same time. But since
motion is relative, we can always move the environment around the qubit instead. . .
and this is how the related experiments are carried out usually.

4.10.1 Dragging a qubit along an arbitrary trajectory

Our starting point is the Schrödinger equation (4.41):

i~
d
dt
| Ψ(t)〉 = H(t) | Ψ(t)〉

The environment the qubit is immersed in is represented by the Hamiltonian H.
As we move the qubit around a trajectory given by x(t), where x = (x, y, z) is
the guiding vector , its environment changes and this can be described by making
the Hamiltonian an explicit function of position x(t). Once the Hamiltonian is an
explicit function of position, so must be the state vector, and so we end up with

i~
d
dt
| Ψ(x(t))〉 = H (x(t)) | Ψ(x(t))〉

5The reason why David Bohm was not awarded the prize was because he was dead by then.
Bohm died of heart attack in London in 1992.
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At every point along the trajectory the Hamiltonian matrix has some eigenvec-
tors, two eigenvectors in the case of a qubit. They will vary from a point to a
point changing their direction, though not length, because this is all done within
the unitary formalism. Let us call these position dependent eigenvectors | n(x(t))〉
so that

H(x(t)) | n(x(t))〉 = En(x(t)) | n(x(t))〉
where En(x(t)) is the eigenvalue of H(x(t)) that corresponds to | n(x(t))〉 at x(t).

Now we are going to introduce an important concept of an adiabatic motion.Adiabatic
evolution Suppose that a qubit is in an eigenstate | n(x(0))〉 at the beginning. As we move

the qubit ever so gently and slowly around x(t) the qubit has enough time to “ther-
malize” at every x(t), i.e., to adjust itself to the local Hamiltonian at this position,
so that it remains in an eigenstate, even though the eigenstate itself changes.

Inspired by equation (4.46) we shall seek a solution to our adiabatic qubit transferSolution to the
adiabatic
motion problem
postulated

problem in the form

| Ψ(t)〉 = e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) | n(x(t))〉 (4.52)

We have the exponential with the time integral of the eigenvalue here, but we also
allow for an additional time-dependent phase factor eiγn(t).

Now we plug this solution into the Schrödinger equation and the equation should
tell us something about the way the gamma factor, γn(t) relates to the eigenstates
and, possibly, to the eigenenergies as well.

The right hand side of the Schrödinger equation, H | Ψ〉 is easy. Here it simply
translates into

En(x(t)) | Ψ(t)〉
The left hand side, i.e., the time-derivative side of the equation, is somewhat more
problematic, because the proposed solution (4.52) depends on time in a rather
complicated way. But, at the end of the day there are just three factors here:

| Ψ(t)〉 = eintegralegamma | eigenvector〉

so

d
dt
| Ψ(t)〉 =

(
d
dt
eintegral

)
egamma | eigenvector〉

+ eintegral

(
d
dt
egamma

)
| eigenvector〉

+ eintegralegamma

(
d
dt
| eigenvector〉

)
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The easiest of the three time derivatives is the derivative of the gamma factor. Here
it is just:

d
dt
eiγn(t) = ieiγn(t) d

dt
γn(t)

The other exponential, the one with the integral in it, throws out −i/~ and the
exponential itself and then we have to find a time derivative of the integral. But
the time derivative of the integral is simply the integrated function En and so:

d
dt
e−i(

R t
0 En(x(t′)) dt′)/~ = − i

~
e−i(

R t
0 En(x(t′)) dt′)/~En(x(t))

Finally let us have a look at the time derivative of the eigenstate | n(x(t))〉. The
eigenstate is a Hilbert-vector valued function of position, which then itself is a
function of time. The time derivative of | n〉 is therefore

∂n(x(t))
∂x

· dx(t)
dt

The expression ∂/∂x is an exotic way of writing a gradient ∇, so we can rewrite
the above as

d
dt
| n(x(t))〉 =|∇n(x(t))〉 · dx(t)

dt
Before we go any further, let me explain this expression, |∇n(x(t))〉 ·

dx(t)/dt some more. The reason this expression requires explaining is because
we are mixing here vector objects that belong to very different spaces. There
are normal 3-dimensional geometric space vectors and vector operators in it,
namely ∇ and x and then we have a Hilbert space vector | n〉 in it too.

Any spinor, including | n〉, can be decomposed into basis spinors, e.g., |↑〉
and |↓〉

| n〉 = n↑ |↑〉+ n↓ |↓〉
=

X

m=↑,↓
nm | m〉

=
X

m=↑,↓
| m〉〈m | n〉

Here nm does not mean n to the power of m. It means the m-th component
of n, and it is, as we have seen in section 4.4, equations (4.25) and (4.26),
simply 〈m | n(x)〉, which is a normal complex valued function of position x,
a function that can be differentiated.

Taking a 3-D space gradient of | n〉 means the following

|∇n(x)〉 =
X

m=↑,↓
∇nm(x) | m〉
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=
X

m=↑,↓

X
i=x,y,z

∂nm(x)

∂xi
ei⊗ | m〉

=
X

m=↑,↓

X
i=x,y,z

ei⊗ | m〉∂〈m | n(x)〉
∂xi

This is a tensor product with one leg, ei, standing in the 3-D space and the
other leg, | m〉, standing in the spinor space. Now we are going to take a 3-D
space scalar (dot) product of this with

dx(t)

dt
=

X
j=x,y,z

dxj(t)

dt
ej

Of course, we cannot contract ej with | m〉. We can only contract it with ei,
and so we end up with

|∇n(x)〉 · dx(t)

dt
=
X

m=↑,↓
| m〉

 X
i=x,y,z

∂〈m | n(x)〉
∂xi

dxi(t)

dt

!

The 3-D vectors of this expression eat each other in the frenzy of a dot product
and leave a 3-D scalar behind. This scalar is

X
i=x,y,z

∂〈m | n(x)〉
∂xi

dxi(t)

dt

and it is this scalar that is now used as the coefficient in the spinor’s expansion

into the basis spinors of the Hilbert space.

Now we have to put it all together into i~d | Ψ〉/dt = H | Ψ〉:
d
dt
| Ψ(t)〉 =

d
dt

(
e−i(

R t
0 En(x(t′)) dt′)/~eiγn(t) | n(x(t))〉

)

= − i
~
e−i(

R t
0 En(x(t′)) dt′)/~En(x(t))eiγn(t) | n(x(t))〉

+ e−i(
R t
0 En(x(t′)) dt′)/~ieiγn(t) d

dt
γn(t) | n(x(t))〉

+ e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) |∇n(x(t))〉 · dx(t)

dt

= − i
~
En(x(t)) | Ψ(t)〉+ i

dγn(t)
dt

| Ψ(t)〉

+ e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) |∇n(x(t))〉 · dx(t)

dt
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We are nearly there. Let us multiply this by i~ and then let us match it against
En | Ψ〉 on the right hand side:

En(x(t)) | Ψ(t)〉 − ~dγn(t)
dt

| Ψ(t)〉

+ i~e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) |∇n(x(t))〉 · dx(t)

dt
= En(x(t)) | Ψ(t)〉

We can immediately see En | Ψ〉 on both sides of the equation. We can also see a
lot of other stuff on the left hand side, which we don’t want. With this other stuff
out of the way we would get En | Ψ〉 = En | Ψ〉, which is a perfectly fine way of
making the Schrödinger equation happy.

So we arrive at the condition: “this other stuff ought to vanish”. We translate
this into the following equation:

−~dγn(t)
dt

| Ψ(t)〉+ i~e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) |∇n(x(t))〉 · dx(t)

dt
= 0

But recall that | Ψ〉 itself contains three terms and it is good to write them explicitly
here:

−~dγn(t)
dt

e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) | n(x(t))〉

+ i~e−i(
R t
0 En(x(t′)) dt′)/~eiγn(t) |∇n(x(t))〉 · dx(t)

dt
= 0

Now we can throw a lot of stuff away. First we divide both sides by the exponentials,
then we divide both sides by ~ and this leaves us with:

dγn(t)
dt

| n(x(t))〉 = i |∇n(x(t))〉 · dx(t)
dt

Finally we multiply both sides by 〈n(x(t))| from the left. This eats |n(x(t))〉 on
the left hand side leaving a pure time derivative of γn there:

dγn(t)
dt

= i〈n(x(t)) |∇n(x(t))〉 · dx(t)
dt

(4.53)

This equation has an obvious solution in the form of a line integral The differential
equation for the
geometric phase
in adiabatic
motion

γn(C) = i

∫

C

〈n(x) |∇n(x)〉 · dx (4.54)
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which says that as we move a qubit along trajectory C, its phase γn accumulates
The line integral
solution for the
geometric phase

contributions of 〈n(x) |∇n(x)〉 ·∆x along the line. It is important to notice that
this accumulation does not depend on how fast or how slow we move the qubit. It
depends only on the variation of |n(x)〉 along the trajectory C.

The integral is purely imaginary, therefore γn(C) is purely real. This is important,
because if γn(C) had an imaginary component the exponential eiγn would change
the length of vector | Ψ〉, and this cannot happen within the confines of the unitary
formalism.

That the integral is purely imaginary can be seen as follows:

0 = ∇1 = ∇〈n | n〉
= 〈∇n | n〉+ 〈n |∇n〉
= 〈n |∇n〉∗ + 〈n |∇n〉
= 2<〈n |∇n〉

4.10.2 A closed trajectory case

Equation (4.54) can be transformed farther if the trajectory C encloses a surface S
so that

C = ∂S

where ∂S means “the edge of S”. In this case
∫

C
becomes

∮
∂S

and we can invoke
the Stokes theorem that converts a line integral over the edge of a surface into aStokes theorem

can be invoked if
the trajectory is
closed

curl integral over the surface itself:
∮

∂S

〈n(x) |∇n(x)〉 · dx =
∫

S

(∇× 〈n(x) |∇n(x)〉) · d2S

We should again stop here and explain this expression in terms of actual functions,
vector and spinor components. What is being differentiated here and what is being
“cross-producted”? 〈n(x) | ∇n(x)〉 is a 3-D vector field on the normal 3-D space.
This vector field arises in the following way:

〈n(x) |∇n(x)〉 =
∑

m=↑,↓

∑

i=x,y,z

n∗m(x)
(

∂

∂xi
nm(x)

)
ei

where n∗m = 〈n | m〉 and nm = 〈m | n〉. The spinor index m is summed away (we
call such an index saturated) and we are left with just a 3-D space index i. Every i
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term is then multiplied by ei so that a vector field comes out. Now we act on this
field with the curl operator ∇×. The result is:

∇× 〈n(x) |∇n(x)〉 =
∑

i = x, y, z
j = x, y, z
k = x, y, z

εijkei
∂

∂xj


 ∑

m=↑,↓
n∗m(x)

∂

∂xk
nm(x)




where εijk is the fully antisymmetric 3-D symbol. The spinor index m in this
expression is saturated as before. So are the j and k 3-D space indexes, but this time
they are saturated in the cross-product way so that, for example, the x-component
of ∇× 〈n(x) |∇n(x)〉 is

∂

∂y


 ∑

m=↑,↓
n∗m(x)

∂

∂z
nm(x)


− ∂

∂z


 ∑

m=↑,↓
n∗m(x)

∂

∂y
nm(x)




These expressions may look somewhat tedious, but they should not look scary.
They are easy to understand in terms of what is what. And we are going to go
some way still towards making them more usable.

The first thing to observe about

∑

i = x, y, z
j = x, y, z
k = x, y, z

εijkei
∂

∂xj


 ∑

m=↑,↓
n∗m(x)

∂

∂xk
nm(x)




is that the derivative ∂/∂xj is going to hit n∗m(x) first, but then when it gets to
∂nm(x)/∂xk it’ll give us zero, because εijk is anti-symmetric in j and k, but ∂

∂xj
∂

∂xk

is symmetric in j and k. This is a yet another formulation of the rule that a curl
of a gradient is zero, ∇×∇nm(x) = 0.

Consequently we are going to have that

∇× 〈n(x) |∇n(x)〉 =
∑

m=↑,↓

∑

i = x, y, z
j = x, y, z
k = x, y, z

εijk

(
∂n∗m(x)
∂xj

)(
∂nm(x)
∂xk

)
ei

Observe that 〈∇n | is not the same as | ∇n〉. On the index level one is n∗m and
the other one is nm. This is just as well, because if they were the same then we
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would have something like (∇n)× (∇n) = 0 and the whole computation would be
over.

Now, ∇nm is simply 〈m |∇n〉 and ∇n∗m is 〈∇n | m〉. Therefore we can rewrite
the expression for γn as follows:

γn(∂S) = i

∫

S

∑

m=↑,↓
〈∇n(x) | m〉 × 〈m |∇n(x)〉 · d2S

because
∑

ijk εijkeiu
jvk = u× v.

This does not look simpler or more useful than equation (4.54), but we are now
going to invoke two important facts.

The first fact is that | n〉 is an eigenvector of a local H at every point on surface
S and therefore it is one of |↑〉 or |↓〉 at that point. Observe that since ∇〈n | n〉 = 0
we have that 〈∇n | n〉 = −〈n |∇n〉, therefore

〈∇n | n〉 × 〈n |∇n〉 = 0

because for any vector v we have that v× (−v) = 0. For this reason we can rewrite
our expression for γn yet again, as follows:

γn(∂S) = i

∫

S

∑

m 6=n

〈∇n(x) | m〉 × 〈m |∇n(x)〉 · d2S

where | m〉 is the other eigenvector. Even though for two dimensional systems such
as qubits, the sum in this equation reduces to just one component, we are going to
keep it, because this way the expression is going to be valid for systems with larger
number of dimensions too – in this case | m〉 stands for all the other eigenvectors
of the local Hamiltonian.

The second fact is that | n〉 must satisfy

H | n〉 = En | n〉

Let us apply the Nabla operator to both sides:

∇ (H | n〉) = ∇ (En | n〉)

This yields
(∇H) | n〉+ H |∇n〉 = (∇En) | n〉+ En |∇n〉

Let us multiply this equation by 〈m | from the left

〈m |∇H | n〉+ 〈m |H |∇n〉 = ∇En〈m | n〉+ En〈m |∇n〉
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Recall that 〈m | H = 〈m | Em. Also, since | m〉 6= | n〉 we have that 〈m | n〉 = 0.
In summary

〈m |∇H | n〉+ Em〈m |∇n〉 = En〈m |∇n〉
or

〈m |∇n〉 =
〈m |∇H | n〉
En − Em

A similar expression holds for 〈∇n | m〉. This lets us rewrite our equation for Surface integral
solution for the
geometric phase
arising from
adiabatic
motion around
a closed loop

γn(∂S) yet again:

γn(∂S) = i

∫

S

∑

m 6=n

〈n |∇H | m〉 × 〈m |∇H | n〉
(En − Em)2

· d2S (4.55)

This equation should be read as follows. At every point of surface S we are
going to differentiate the Hamiltoanian. This will produce three new operators in
place of just one, they’ll correspond to ∂H/∂x, ∂H/∂y and ∂H/∂z. For a given
state | n〉 and for each state | m〉 6= | n〉 (in case of a qubit there will be only one
such state) we are going to have three numbers per point obtained by evaluating
transition amplitudes 〈n | ∂H/∂x | m〉, 〈n | ∂H/∂y | m〉 and 〈n | ∂H/∂z | m〉
– thus forming a 3-D vector at this point. We are also going to have another
three numbers obtained by evaluating 〈m | ∂H/∂x | n〉, 〈m | ∂H/∂y | n〉 and
〈m | ∂H/∂z | n〉 forming another 3-D vector at this point. We will have to take
a cross product of these two vectors and divide it by (En − Em)2 then we’ll have
to take a scalar product of the resulting vector with the surface element d2S and
this will produce a . . . number – just a normal complex number. For each point
of surface S this operation has to be repeated for the remaining m-s, if there are
such – this is only going to be the case in quantum systems with a larger number of
dimensions than single qubits – and the results added. Finally, the operation has
to be repeated for every other point of the surface, then the resulting numbers all
summed up, the result multiplied by i and . . . this is our γn.

A numerical procedure doing all this can be easily implemented and this means
that we understand the formula. This is not always the case in quantum physics.

Equations (4.54) and (4.55) provide us with a method to evaluate the change of
phase that accompanies the movement of a qubit (or any other quantum system,
because we were sufficiently general here) along any trajectory and along a trajec-
tory that encloses a surface respectively. The first equation (4.54) that looks quite
simple is also very general. The second equation (4.55) looks more complicated,
but this is because it is more specific.
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4.10.3 A qubit in the rotating magnetic field

Although the title of this section “Taking qubits for a ride”, as well as the wording
that accompanies the derivation are highly suggestive of moving the qubits in the
physical geometric 3-D space, the formulas derived and the reasoning itself are more
general. They describe the movement of the qubit or any other quantum system in
any parametric space. For example, if a qubit is subjected to slowly varying mag-
netic field, sufficiently slowly for the qubit’s eigenstates to thermalize, i.e., align
with the direction of the magnetic field, at all stages of the evolution – this can be
also thought of as a “movement” of the qubit through . . . the magnetic space. The
only assumption we have made in deriving equation (4.55) was that the parametric
space was 3-dimensional, so that both the Stokes formula and cross product manip-
ulations could be applied. But no such assumption was made in deriving equation
(4.54), which is therefore applicable to higher dimensional parametric spaces too.

Consider a situation in which a magnetic field vector B is rotated adiabaticallyRotating
magnetic field
adiabatically
around a qubit

around a qubit in a plane as shown in figure 4.6. The field’s value does not change

-
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Figure 4.6: Magnetic field B rotates adiabatically around a qubit placed in the
center of the figure.

throughout the rotation. This operation is equivalent to taking the qubit for a ride
along a circle of radius B in the B space as shown in figure 4.7.

In order to evaluate a contribution that this operation is going to make to
the phase γn(∂S) (remember that there is going to be a dynamic phase factor
exp

(
−i ∫ t

0
En (x(t′)) dt′

)
in the complete solution for | Ψ(t)〉 too) we need to use

equation (4.55). But right here we have a conundrum, because the surface S in
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-

6

Bx

By

B(t)

Figure 4.7: A qubit can be thought of as moving along the circle of radius B in the
B space.

the B space, namely the circle of radius B, passes through B = 0, where E↑ = E↓
and equation (4.55) tells us that we should divide some such rather complicated
expression made of a cross product and transition amplitudes by (E↑ − E↓)2. Alas,
this expression is valid and the same for any surface S as long as its edge is the Surface S may

be deformed so
as to keep it
away from
singularity.

contour along which the qubit moves. So here we can use a different surface, for
example, a hemi-sphere of radius B that stands on the great circle of the sphere,

A hemi-sphere
is a good surface
to choose
because B is
constant on it
and because we
know its surface
area.

with the qubit moving along the perimeter of the great circle. The hemi-sphere
stays away from B = 0 and so we don’t have the problem. Furthermore, B is the
same at every point of the hemi-sphere, so this will make our calculations easier.

We are going to evaluate γn(∂S) for n =↑, ↓. The sum in equation (4.55) reduces
to a single component only, because our qubit system is two dimensional. And so
we have:

γ↑(∂S) = i

∫

S

〈↑|∇H |↓〉 × 〈↓|∇H |↑〉
(E↑ − E↓)2

· d2S

γ↓(∂S) = i

∫

S

〈↓|∇H |↑〉 × 〈↑|∇H |↓〉
(E↓ − E↑)2

· d2S

Now, let us have a look at ∇H. This is easy to evaluate because H = −µ (Bxσx +Byσy +Bzσz)
and ∇ = (∂/∂Bx, ∂/∂By, ∂/∂Bz) and so

∇H = −µ



σx

σy

σz
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Consequently

γ↑(∂S) = i

∫

S

µ2

(E↑ − E↓)2



〈↑| σy |↓〉〈↓| σz |↑〉 − 〈↑| σz |↓〉〈↓| σy |↑〉
〈↑| σz |↓〉〈↓| σx |↑〉 − 〈↑| σx |↓〉〈↓| σz |↑〉
〈↑| σx |↓〉〈↓| σy |↑〉 − 〈↑| σy |↓〉〈↓| σx |↑〉


 · d2S

and

γ↓(∂S) = i

∫

S

µ2

(E↑ − E↓)2



〈↓| σy |↑〉〈↑| σz |↓〉 − 〈↓| σz |↑〉〈↑| σy |↓〉
〈↓| σz |↑〉〈↑| σx |↓〉 − 〈↓| σx |↑〉〈↑| σz |↓〉
〈↓| σx |↑〉〈↑| σy |↓〉 − 〈↓| σy |↑〉〈↑| σx |↓〉


 · d2S

Observe that γ↑(∂S) = −γ↓(∂S). This is easy to see once the integrals have been
written out in detail as above.

Remember that |↑〉 and |↓〉 are the eigenvectors of the local Hamiltonian and the
local Hamiltonian, which is represented by vector B may point in any direction,
not necessarily in the ez direction. Consequently, |↑〉 and |↓〉 may not be equivalent
to

(
1
0

)
and

(
0
1

)
, which are the eigenvectors of σz. Nevertheless we can evaluate

(E↑ − E↓)2, which is (2µB)2 and

µ2

(E↑ − E↓)2
=

µ2

4µ2B2
=

1
4B2

At a given point of surface S we can rotate our system of coordinates so thatWe may
represent |↑〉
and |↓〉 by

(
1
0

)

and
(
0
1

)
respectively at a
selected point of
surface S.

H = −µBσz – just at this point only. This does not affect ∇H, which still has
three non-vanishing components, but it lets us represent |↑〉 and |↓〉 at this point
and at this point only as

(
1
0

)
and

(
0
1

)
. At this point then we can evaluate




(1, 0)σy

(
0
1

)
(0, 1)σz

(
1
0

)
− (1, 0)σz

(
0
1

)
(0, 1)σy

(
1
0

)

(1, 0)σz

(
0
1

)
(0, 1)σx

(
1
0

)
− (1, 0)σx

(
0
1

)
(0, 1)σz

(
1
0

)

(1, 0)σx

(
0
1

)
(0, 1)σy

(
1
0

)
− (1, 0)σy

(
0
1

)
(0, 1)σx

(
1
0

)




Before we go any further, recall that
(
1
0

)
and

(
0
1

)
are eigenvectors of σz. For this

reason all occurrences of
(
1
0

)
σz

(
0
1

)
and

(
0
1

)
σz

(
1
0

)
must vanish and by doing so they’ll

take down the first and the second row of the large, fat vector above with them.
The only row that’s going to survive is the third row. And this row is:

(1, 0)σx

(
0
1

)
(0, 1)σy

(
1
0

)
− (1, 0)σy

(
0
1

)
(0, 1)σx

(
1
0

)



The Unitary Formalism 173

= (1, 0)
(

0 1
1 0

) (
0
1

)
(0, 1)

(
0 −i
i 0

)(
1
0

)

− (1, 0)
(

0 −i
i 0

)(
0
1

)
(0, 1)

(
0 1
1 0

) (
1
0

)

= i− (−i) = 2i

And so at this particular point the vector is



0
0

2i


 = 2i

B

B

By writing it in this form B/B we make it independent of the system of coordinates
we have chosen to evaluate this expression, so that we can use it elsewhere too.

Now we can finally wrap it all together and this is the expression we get for
γ↑(∂S) (and for γ↓ = −γ↑ as well):

γ↑(∂S) = i

∫

S

1
4B2

2iB
B
· d2S = −1

2

∫

S

B

B3
· d2S

The integral
∫

S

(
B/B3

) · d2S represents the solid angle that surface S subtends
with respect to point B = 0. Calling this angle Ω we get this amazingly beautiful The geometric

phase shift
experienced by a
qubit in
adiabatically
rotating
magnetic field is
equal to half of
the solid angle
subtended by the
field trajectory
in the B space.

result:
γ↑(∂S) = −1

2
Ω

The phase shift experienced by a qubit in an eigenstate that is moved adiabatically
along a closed trajectory in the B space is equal to ±1/2 (the sign depends on
whether it is |↑〉 or |↓〉) times the solid angle subtended by the surface enclosed by
the trajectory with respect to the B = 0 point. It is very seldom that we arrive
at so startlingly elegant a result in physics or in mathematics.

But what about our specific problem of a qubit in a rotating magnetic field.
What is the actual number?

The number is easy to evaluate. Recall that our surface in this case is the hemi-
sphere centered on B = 0 of a constant radius B. Vector B in this case is parallel
to the normal vector at each point of the surface, i.e., B = Bn and so is parallel
to d2S = nd2S too. The integral becomes:

γ↑(∂S) = −1
2

1
B2

∫

S

n · nd2S = − 1
2B2

2πB2 = −π

and the phase factor γ is
eiγ↑ = e−iπ = −1
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and
eiγ↓ = eiπ = −1

For an arbitrary spinor | Ψ〉 = a |↑〉+ b |↓〉 the final result of this excursion is

| Ψ〉 → ae−iE↑∆t/~(−1) |↑〉+ be−iE↓∆t/~(−1) |↓〉
where ∆t is the time it takes to rotate the field. The time integrals in the dynamic
phase part of the expression reduce to just exp (−iE↑,↓∆t/~), because B is constant
(though B rotates slowly). This corresponds to Larmor precession around each
direction of B the qubit goes through. Observe that the dynamic factor depends
on time it takes to complete the excursion. On the other hand the γ factor depends
on the solid angle only. This is why it is called the geometric phase factor. It is
also called the Berry phase factor, or just the Berry phase for short.

But in this case it is clear that the geometric phase factor has no physical effect,
because it vanishes in all expressions such as ρ =| Ψ〉〈Ψ | or |〈↑, ↓| Ψ〉|2.

But consider an excursion in the B space around a surface that subtends a solid
angle Ω that is less than 2π. In the physical and in the B space this means that
we rotate B conically rather than in a plane. This is shown in figure 4.8.

I µ

Figure 4.8: An excursion in the B space that results in a smaller solid angle Ω < 2π.

In this case eiγ = e−iΩ/2 and e−iγ = eiΩ/2 no longer overlap and we get a
physically observable effect.

Suppose we start our excursion with a qubit in the |→〉 state

| Ψ(t = 0)〉 =
1√
2

(|↑〉+ |↓〉)

At the end of the excursion the qubit ends up in the state given by

1√
2

(
eiµB∆t/~e−iΩ/2 |↑〉+ e−iµB∆t/~eiΩ/2 |↓〉

)
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What is going to be the effect of this change on the r vector that describes the
qubit? The z component of r is not going to change, because

rz = aa∗ − bb∗ = 0

But both rx and ry acquire an additional rotation due to γ: A qubit rotated
by B(t) such
that Ω < 2π
acquires an
angular lag of Ω
behind the
accumulated
angle of the
Larmor
precesion.

rx = ab∗ + ba∗

=
1
2

(
ei(µB∆t/~−Ω/2)ei(µB∆t/~−Ω/2) + e−i(µB∆t/~−Ω/2)e−i(µB∆t/~−Ω/2)

)

=
1
2

(
ei(2µB∆t/~−Ω) + e−i(2µB∆t/~−Ω)

)

= cos(ωL∆t− Ω)

where ωL = 2µB/~ is the Larmor frequency, and

ry = i(ab∗ − ba∗)
= − sin(ωL∆t− Ω)

We find that the qubit has accumulated an angular lag of Ω in the real physical
space. The lag cancels itself away when Ω = 2π.

4.10.4 Observing Berry phase experimentally

In the last 20 years or so, numerous papers have been published on the subject of
Berry phase. A search on the automated e-print archives retrieves some 340 papers
on Berry phase or on geometric phase. But very, very few of these are experimental
papers that focus specifically on the demonstration of Berry phase in quantum
systems.

Perhaps amongst the most elegant such demonstrations is the one by Richardson,
Kilvington, Green and Lamoreaux [48] that was published in Physical Review Let-
ters in 1988. Richardson and his colleagues from Institut Laue-Langevin in France
and from the Rutherford-Appleton Laboratory in the UK used ultracold neutrons
to demonstrate the Berry shift.

This method is very clean and the results obtained by the authors agree with
theoretical predictions exceptionally well. This is very important because there are
certain assumptions in the derivation of the Berry phase that may be questioned.
The first one is the very notion of an adiabatic evolution of a qubit. The concept
itself is not very clear and some authors proposed revisions. Alas, the surprising
effect of such revisions was that the Berry phase disappeared, so that the revisions
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themselves had to be revised in order to bring it back [41]. This development
points to the crucial importance of experiment in physics. However convincing and
mathematically elegant a derivation, there may be always something subtle in it
that’s missed or the underlying assumptions may not be correct. Experimental
verification of a prediction provides us with certainty as to the proposed effect.

The experiment carried out by Richardson, Kilvington, Green and Lamoraux
is additionally of great value and interest to us, because it demonstrates what is
involved in precise manipulation and control of quantum systems to the level that
would make quantum information processing feasible.

The ultracold neutrons used in the experiment are neutrons that have been slowed
down to less than 5 m/s. The neutrons are stored in a vacuum chamber lined with
beryllium and beryllium oxide walls, since ultracold neutrons reflect from such walls
with negligible loss for all incident angles. Nevertheless surface contamination andStoring neutrons

in a chamber leaks in the valve that’s used to fill and empty the chamber reduce the lifetime of
neutrons dramatically, from nearly 10 minutes to only about 80 seconds. But 80
seconds is time a plenty in the quantum domain. We have seen in the quantronium
example that the quantum state there decayed within about a microsecond.

The neutrons are generated by irradiating a 25 litre container filled with liquidGenerating and
cooling neutrons deuterium held at 25 K with fast neutrons emitted by a high-flux nuclear reactor.

This irradiation procedure results in generation of ultra cold and very cold neutrons,
which are then transported 10 m up through a nickel coated evacuated pipe. Nickel
coating for the pipes is chosen again to limit neutron loss. The neutrons lose some
of their energy in the process (to gravity) and are then pushed through a turbine
that further slows the very cold neutrons thus doubling the number of ultra cold
neutrons. At the output the utra cold neutron density is about 90/cm3.

The ultra cold neutrons are then passed through an 800 nm thick magneticallyPolarizing
neutrons saturated polarizing foil made of cobalt-nickel alloy. Afterwards they are trans-

ported towards their 5 litre beryllium and beryllium oxide lined chamber along a
copper-nickel alloy coated silica guide and pushed into the chamber through holes
in the five-layer Mumetal magnetic shield. Mumetal is an 80% nickel-iron alloy that
is specially designed for magnetic shielding applications.

It takes about 10 seconds to fill the chamber to the density of 10 neutrons per cu-Thermalizing
and rotating
neutrons in the
chamber

bic centimeter, whereupon the neutron valve is closed. All neutrons in the chamber
are initially polarized in the z direction by a 5 milligauss magnetic field, B = B0

zez.
They are allowed to thermalize for 2 seconds and are then subjected to a temporally
varying magnetic field for about 7.4 seconds, which is followed by another 2 seconds
wait.

The varying magnetic field applied during the middle 7.4 seconds period is givenHow is the field
rotated
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by

B = aB0ex ± (1 + ε)B0 cos
2πt
T

+B0 sin
2πt
T

where a, ε, B0 and T are constants and T is the time for one rotation.
The field rotates in the ey ×ez plane and has a non-vanishing x component that

lets the experimenters controll the solid angle Ω. Additionally ε is the ellipticity
parameter that allows for variation of B over the path. The solid angle Ω that
corresponds to the trajectory is given by

Ω = 2π
(

1± a√
1 + a2

)

where the sign ± depends on the sign of the magnetic moment and direction of the
rotation.

After the excursion the neutron valve is opened and the same foil that was used Extracting the
neutrons from
the chamber and
measuring them

to polarize them in the first place is now used to filter them on the way out, thus
performing the measurement. An adiabatic spin flipper is used to filter both |↑〉
and |↓〉 states, which are then counted in a helium proportional counter neutron
detector for 10 seconds per state.

The magnetic field configuration used in the experiment is rotated by 90◦ com- Why is the
rotation done in
the ey × ez

plane

pared to our examples discussed in the previous section. But this is done for a
good purpose. Recall that what we normally measure is the z component of the
spin, what we called p0 and p1 in chapter 2. If we were to perform the rotation in
the ex × ey plane we would have to have a separate differently oriented device for
measuring spins in the x and y directions. Furthermore we would have problems
with preparation of the initial conditions too. As things are done in the experiment,
when the neutrons enter the chamber they are polarized in the z direction and af-
ter thermalization their p0(t = 0) is 1 and their rz(t = 0) = 1 too. They are then
rotated in the ey × ez plane and their final angle of rotation, θ, can be read from
p0 = (1 + rz)/2 and p1 = (1 − rz)/2, namely rz(t = T ) = cos θ = p0(T ) − p1(T ),
as measured by the same polarizing foil when the neutrons are extracted from the
chamber.

The final angle of rotation contains the accumulated dynamic phase and the
geometric phase, i.e.,

θ↑ = 2µ
∫ T

0

B(t)dt− Ω (4.56)

and θ↓ = −θ↑.
For a multiple number of revolutions of the field, N , both the dynamic and the

geometric phases accumulate so in this case we get θ↑ = N
(

2µ
∫ T

0
B(t)dt− Ω

)
.
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The magnetic field was generated by running current through three sets of coils,How was the
magnetic field
generated and
controlled

which were placed within the magnetic shield, but outside the vacuum chamber
containing the neutrons. The coils were perpendicular to each other with accuracy
of better than 2◦ and were calibrated to within 0.1% accuracy. An analog computer
was used to control the currents. In turn a timer and a zero-crossing switch were
used to control the computer, so that exactly one full rotation, or a multiple thereof,
could be generated.

In spite of all the precautions and the use of special materials there was a residualSources of
depolarization magnetic field of about 10µG and a non-vanishing gradient in the neutron chamber.

This residual field was strong enough to depolarise the neutrons for small values of
B0. The presence of the residual field limited the duration of the rotation T and
set a lower limit to B0.

Another problem was caused by an aluminum can in which the neutron chamber
was enclosed. Varying B too quickly would generate eddy currents in the can,
which would rapidly depolarize the neutrons too. So T could not have been made
too short. The choice of T ≈ 7.4 s resulted from this restriction.

The measurements proceeded as follows. A given set of parameters N , a and εCollecting
neutron counts would be fixed. For this set of parameters the spin-up and spin-down counts were

collected as a function of B0. Each chamber fill and store cycle would yield a certain
number of counts. This was being repeated until between 60,000 and 70,000 counts
were collected for each (N, a, ε, B0) tuple.

The collected counts had to be weighed to correct for the fact that spin-up neu-Calibrating the
instrument and
weighing the
counts

trons were counted first, and while they were being counted, the spin-down neutrons
were stored in the guide and reflected off the polarizer, thus suffering additional
depolarization. Other sources of depolarization had to be included in final data
analysis too. This is normally done by calibrating the system against known neu-
tron configurations obtained, e.g., by filling the chamber with polarized neutrons,
thermalizing them, doing nothing to them for 7.4 s, then emptying the chamber
and counting the neutrons.

In the end, after many days of collecting and processing data6, the experimentersExperimental
results - the
Berry phase is
clearly seen and
accurately
measured

arrived at the numbers shown here in table 4.10.4.
The agreement between Berry’s predictions and observed values of the additional

angle due to the geometric phase shift is very good. Ellipticity of the orbit has no
effect as long as the solid angle in the B space remains unchanged. The Berry angle
is clearly accumulative – this can be seen by comparing data for various values of
N .

6What does this tell us about the feasibility of using quantum systems for computations?
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calculated observed
a ε N Ω/2π Ωu/2π Ωd/2π

0.000 0.00 1 1.000 1.00± 0.01 1.00± 0.02
0.000 0.25 1 1.000 1.00± 0.03 0.99± 0.05
0.000 0.62 1 1.000 1.01± 0.03 1.00± 0.05
0.000 0.00 2 2.000 2.00± 0.03 1.97± 0.06
0.000 0.00 3 3.000 2.87± 0.15 2.89± 0.15
0.268 0.00 1 1.259 1.28± 0.01 1.26± 0.03
0.577 0.00 1 1.500 1.52± 0.02 1.51± 0.03
0.577 0.00 2 3.000 3.00± 0.03 2.99± 0.05
1.000 0.00 1 1.707 1.68± 0.01 1.69± 0.02
1.732 0.00 1 1.866 1.74± 0.15 1.72± 0.40
3.732 0.00 1 1.966 1.97± 0.01 1.98± 0.02

Table 4.1: Results of the experiment. a defines the solid angle Ω, ε is the ellipticity,
N is the number of rotations, Ω is the theoretical value of the Berry angle, see
equation (4.56), which should be equal to the solid angle and to the solid angle
alone, Ωu is the measured value of the Berry angle obtained by counting spin-up
neutrons and Ωd is the measured value of the Berry angle obtained by counting
spin-down neutrons. Observe increased depolarization for N = 3 and the lack of
effect for ε 6= 0.

4.10.5 Berry phase gates

Berry phase has been proposed as an additional mechanism for processing quantum Examples of
Berry phase
gates

information. The device discussed in the previous section constitutes an example of
a Berry phase gate. Jones, Vedral, Ekert and Castagnoli even demonstrated a con-
ditional Berry phase gate using nuclear magnetic resonance [33]. Yau, De Poortere
and Shayegan detected signs of Berry phase in oscillations of the resistance of
a mesoscopic gallium arsenide ring embedded in a magnetic field – although this
could have been demonstrated only after the measured spectra were compared with
simulation results [54]. This gives us hope that we may see a more direct evidence
for Berry phase in quantum electronic devices one day.

But this idea is not without its problems.
The first difficulty is that the Berry phase is always mixed with Larmor precession Berry phase is

mixed with
Larmor
precesion

in a way that Rabi oscillations aren’t. Recall that Rabi oscillations affect p0/p1,
whereas Larmor precession leaves p0 and p1 intact, unless the background field is
rotated by 90◦ as has been done in the Richardson’s experiment. This makes it
possible to design a computational system based on Rabi oscillations that utilizes
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p0 and p1 but ignores p2 and p3. Indeed most quantum algorithms developed so
far and their experimental demonstrations do just this.

The second problem is lack of precision. It is very difficult to rotate the wholeBerry phase
gates are
imprecise

external magnetic field system by precisely one revolution and under exactly the
solid angle that we need. The Richardson’s experiment is extraordinarily precise
for quantum mechanics, but even here we have seen as much as 23% errors for
some (N, a, ε, B0) tuples and for statistical ensembles of some 70,000 events per
tuple. Berry shift that is seen in the Yau’s gallium arsenide ring is so far out that
the experimenters could only claim qualitative agreement with Berry’s predictions.
The idea of actually moving qubits physically in 3-D space, rather than subjecting
them to a passive excursion as it has been done in the Richardson’s experiment is
probably completely unrealistic, since touching and pushing a qubit, by whatever
means, would most likely destroy its quantum state to begin with.

Then we have the problem of addressing individual qubits in a quantum register.Individual qubits
cannot be
addressed with
Berry gates

The register may be a molecule, or a collection of atoms trapped in an optical lattice
or something else. Rotating magnetic field around the register would perform the
operation on all its qubits, not just on a selected qubit. The usefulness of such
an operation is likely to be very limited. On the other hand the Rabi oscillations
mechanism lets us talk to individual qubits on private channels. If a register is a
specially constructed molecule, atoms in various locations within the molecule are
sensitive to different Rabi frequencies because of the so called chemical shifts. By
sending signals on these frequencies we can address individual qubits and not have
other qubits eavesdrop on the communication. Similarly, we can read individual
qubits by tuning the receivers to chemically shifted Rabi frequencies.

This last problem could be overcome in quantum electronic circuits if every qubit
could be equipped in its own local “magnetic field” circuitry, the way it has been
done, for example, in the quantronium.

Last but not least we have the issue of adiabatic transport. Berry phase equa-Berry gates are
slow tion does not work for non-adiabatic transport. If a qubit manipulation is too

fast we have to solve the Schrödinger equation exactly without making the adia-
batic assumption that an eigenvector remains an eigenvector throughout the whole
excursion. For a transport to be adiabatic it must be slow. But a slow qubit ma-
nipulation means a slow gate and inevitable high depolarization rate while the gate
is being traversed.

In summary, rather than thinking of Berry phase as a possible gate mechanism,
we may have to think about it as a yet another parasitic effect, alongside with
Larmor precesion, that has to be kept under control while quantum information is
being processed.
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5.1 Entangled states

Whereas a single, isolated qubit is mathematically equivalent to a classical magnetic
dipole—be it with some read-out and statistical complications—a system of two
qubits, a biqubit , is equivalent to two classical magnetic dipoles occasionally only.
At other times it displays a rather puzzling behaviour that had stirred a great deal
of theoretical and experimental investigations towards the end of the XXth century
and from which the ideas of quantum computing eventually arose.

But let us begin by considering two separate qubits first, i.e., qubits that are
equivalent to two classical magnetic dipoles.

Using the elementary laws of probability calculus, as we have discussed in section
1.9, page 37, we would describe the qubits in terms of a tensor product of their
fiducial vectors, i.e., we would say that the state of the system comprising qubits
A and B is

pA ⊗ pB

Measurements on this system would then be expressed by a tensor product of two
forms: the first one, ωA, describing a measurement on pA and the second one, ωB ,
describing a measurement on pB . And so, for example, the probability that qubit
A is in state |↑〉 is

p0 = 〈ω0
A,pA〉,

where ω0
A is a canonical form in the space of qubit A.

To remind you, “canonical” here means that it simply extracts the 0th

component of vector pA. See equations 2.15 on page 64 and 2.16 on page 64.

The probability that qubit B is in state |→〉 is

p2 = 〈ω2
B ,pB〉,

and the probability that qubit A is in state |↑〉 while qubit B is in state |→〉 – of
all other possible two-qubit combinations – is

p0p2 = 〈ω0
A,pA〉〈ω2

B ,pB〉 = 〈ω0
A ⊗ ω2

B ,pA ⊗ pB〉
The two-qubit energy form is somewhat more complicated, because energy is an

additive quantity, i.e., energy of a two-qubit system is a sum of energies of the two
qubits, as long as they don’t interact with each other.
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This can be captured in the following way. Recall that

〈ςi, ςj〉 = 2δi
j , i, j = 1, x, y, z

therefore
〈ς1,p〉 = 〈ς1,

1
2

(ς1 + rxςx + ryςy + rzςz)〉 = 1

Consequently if ηA and ηB are the energy forms acting on the fiducial vector of
qubits A and B respectively, the energy form for a system of two separate non-
interacting qubits is:

ηA ⊗ ς1
B + ς1

A ⊗ ηB

What if the qubits do interact with each other? Then the energy form may have
an additional term that couples to both qubits simultaneously

ηA ⊗ ς1
B + ς1

A ⊗ ηB + ηAB

where ηAB is a form of rank two, i.e., a form that acts on objects such as pA⊗pB .
When evaluating biqubit expressions, we must always remember that only forms

operating on qubit A can be applied to this qubit. Expressions such as

〈ηA,pB〉
make no sense, because form ηA does not operate in the space of states of qubit B.

We can switch between fiducial and quaternion formalisms by converting qubit
probability vectors p to the corresponding quaternions ρ, keeping at the same time
the tensor product symbol in place:

pA ⊗ pB → ρA ⊗ ρB

And then we can substitute Pauli matrices in place of quaternion units σx, σy, and
σz, so that the tensor product of quaternions becomes the tensor product of Pauli
matrices.

We must not yield to the temptation of just multiplying ρA by ρB – regardless of
whether the sigmas are thought of as quaternions or Pauli matrices. The product in
waiting must wait and the two separate vector spaces are mapped on two separate
quaternion spaces and these in turn are mapped on two separate spaces of 2 × 2
complex matrices.

To emphasize this we’re going to add subscripts A and B to the sigmas as well

pA → 1
2

(
1A + rx

AσxA + ry
AσyA + rz

AσzA

)

pB → 1
2

(
1B + rx

BσxB + ry
BσyB + rz

BσzB

)
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Matrices σiA and σiB look the same as normal Pauli matrices σi, but operate in
different spaces. This must be emphasized ad nauseam.

Having unpacked the sigmas onto 2× 2 matrices, we can go further and express
our qubit states in terms of Hilbert space vectors, | Φ〉A and | Ψ〉B such that:

| Φ〉A ⊗ A〈Φ | = ρA, and

| Ψ〉B ⊗ B〈Ψ | = ρB

This is going to work only when both constitutent states pA and pB are pure. For
such pure states we have

ρA ⊗ ρB = (| Φ〉A ⊗ A〈Φ |)⊗ (| Ψ〉B ⊗ B〈Ψ |)
= (| Φ〉A⊗ | Ψ〉B)⊗ (A〈Φ | ⊗B〈Ψ |)

So we end up with tensor products of two Hilbert space vectors or forms representing
a biqubit system.

In summary, our chain of mappings from measurable probabilities for a system
of two qubits in pure states to highly abstract (though convenient) states in the
Hilbert space looks as follows:

pA ⊗ pB → ρA ⊗ ρB →| Φ〉A⊗ | Ψ〉B

Let

| Φ〉A = a |↑〉A + b |↓〉A, and

| Ψ〉B = c |↑〉B + d |↓〉B

where a, b, c and d are four complex numbers such that aa∗+bb∗ = 1 and cc∗+dd∗ =
1. Then

| Φ〉A⊗ | Ψ〉B = ac |↑〉A⊗ |↑〉B + ad |↑〉A⊗ |↓〉B
+bc |↓〉A⊗ |↑〉B + bd |↓〉A⊗ |↓〉B

Observe that normalization conditions imposed on the Hilbert space states of indi-
vidual qubits result in the following normalization condition of the biqubit state:

ac(ac)∗ + ad(ad)∗ + bc(bc)∗ + bd(bd)∗

= aa∗(cc∗ + dd∗) + bb∗(cc∗ + dd∗)

= aa∗ + bb∗ = 1
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In summary, we find that a biqubit state

α |↑〉A⊗ |↑〉B + β |↑〉A⊗ |↓〉B + γ |↓〉A⊗ |↑〉B + δ |↓〉A⊗ |↓〉B

such that

α = ac

β = ad

γ = bc

δ = bd

where aa∗ + bb∗ = cc∗ + dd∗ = 1 represents two separate qubits.
Dividing the first equation by the second one and then the third equation by the

fourth one yields:
α/β = c/d = γ/δ

In turn, dividing the first equation by the third one and then the second equation
by the fourth one yields:

α/γ = a/b = β/δ

Both equations are in fact the same and equivalent to

αδ − βγ = 0

or

det
(
α β
γ δ

)
= 0 (5.1)

This is a simple criterion that we can use to check if a given pure (because here we’re
within the unitary formalism) biqubit state can be separated into two independent
qubits at all. To be more precise this is a necessary though not sufficient condition.
But necessary is good enough if we want to prove that a given pure biqubit state
is not separable.

To see how this criterion works consider the following biqubit state:

| Ψ−〉AB =
1√
2

(|↑〉A⊗ |↓〉B− |↓〉A⊗ |↑〉B) (5.2)

For this state α = δ = 0 but β = 1/
√

2 = −γ. The state is normalized because
β2 + γ2 = 1 but

det
(
α β
γ δ

)
= −βγ =

1
2
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So this is an example of a pure biqubit state that cannot be split into two separate
qubits.

Can such states exist? If so, what do they mean and what is their fiducial, i.e.,
observable representation?

In order to arrive at the fiducial representation of this biqubit state we’re going
to convert it to a density operator and then to a quaternion representation.

ρAB = | Ψ−〉AB ⊗ AB〈Ψ− |
=

1√
2

(|↑〉A⊗ |↓〉B− |↓〉A⊗ |↑〉B)⊗ 1√
2

(A〈↑| ⊗B〈↓| −A〈↓| ⊗B〈↑|)

=
1
2

(
(|↑〉A ⊗ A〈↑|)⊗ (|↓〉B ⊗ B〈↓|)− (|↑〉A ⊗ A〈↓|)⊗ (|↓〉B ⊗ B〈↑|)

− (|↓〉A ⊗ A〈↑|)⊗ (|↑〉B ⊗ B〈↓|) + (|↓〉A ⊗ A〈↓|)⊗ (|↑〉B ⊗ B〈↑|)
)

Invoking expressions we have arrived at in section 4.2, page 114, we can convert
this readily to 2× 2 matrices:

ρAB =
1
2

((
1 0
0 0

)

A

⊗
(

0 0
0 1

)

B

−
(

0 1
0 0

)

A

⊗
(

0 0
1 0

)

B

−
(

0 0
1 0

)

A

⊗
(

0 1
0 0

)

B

+
(

0 0
0 1

)

A

⊗
(

1 0
0 0

)

B

)

Now we use equations 4.8 on page 112 to express the matrices in terms of Pauli
matrices:

ρAB =
1
2

(
1
2

(1A + σzA)⊗ 1
2

(1B − σzB)

−1
2

(
σxA + iσyA

)⊗ 1
2

(
σxB − iσyB

)

−1
2

(
σxA − iσyA

)⊗ 1
2

(
σxB + iσyB

)

+
1
2

(1A − σzA)⊗ 1
2

(1B + σzB)

)

which simplifies eventually to

ρAB =
1
4

(
1A ⊗ 1B − σxA ⊗ σxB − σyA ⊗ σyB − σzA ⊗ σzB

)
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At this stage we can convert this to measurable probabilities by replacing Pauli
sigmas with Pauli varsigmas:

pAB =
1
4

(
ς1A ⊗ ς1B − ςxA ⊗ ςxB − ςyA ⊗ ςyB − ςzA ⊗ ςzB

)
(5.3)

And this is our matrix of measurable probabilities:

pAB =




p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33


 =




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




It has 16 entries and it specifies the biqubit system entirely in terms of probabilities
of detecting qubit A’s “spin” against one “direction” and qubit B’s “spin” against
some other “direction” at the same time - with “directions” for both qubits being
±ez (↑, ↓), ex (→) and ey (⊗). The measurements on each qubit are carried
out the same way as before, but this time it is not enough to measure each qubit
separately. To fully characterize the state, we need 16 probabilities of two specific
events happening simultaneously.

How simultaneous do they have to be? Simultaneous enough so that, say, qubit
B does not have a chance of interacting with the environment after qubit A has
been measured.

How to get the actual numbers, pij , from the varsigma expression? This is easier
than it may seem at first glance.

Recall that
pij = 〈ωi ⊗ ωj ,pAB〉

where ωi are the canonical forms. The canonical forms are not dual to Pauli
vectors, but they are dual to canonical vectors ei and we know how to express
Pauli vectors in terms of canonical vectors, because equations 2.11 on page 62
specify the procedure, namely:

ς1 = e0 + e1 + e2 + e3

ςx = e2

ςy = e3

ςz = e0 − e1

So the trick here is to replace the varsigmas in equation 5.3 with canonical vectors,
and this will flush out the actual probabilities right away.
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Having made the corresponding substitutions we obtain

pAB =
1
4

(
(e0A + e1A + e2A + e3A)⊗ (e0B + e1B + e2B + e3B)

−e2A ⊗ e2B − e3A ⊗ e3B

− (e0A − e1A)⊗ (e0B − e1B)
)

The first term corresponds to a 4× 4 matrix of ones:

(e0A + e1A + e2A + e3A)⊗ (e0B + e1B + e2B + e3B)

=




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




The second and third terms correspond to matrices of zeros with 1 in the (2, 2) and
(3, 3) positions respectively:

e2A ⊗ e2B =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 , e3A ⊗ e3B =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




and the last term corresponds to a matrix that looks as follows:

(e0A − e1A)⊗ (e0B − e1B)

= e0A ⊗ e0B − e0A ⊗ e1B − e1A ⊗ e0B + e1A ⊗ e1B

=




1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0




Combining the matrices yields

pAB =
1
4

(



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


−




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




−




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


−




1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 1




)
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=
1
4




0 2 1 1
2 0 1 1
1 1 0 1
1 1 1 0


 =




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




Now we can finally get down to physics. And the physics that emerges from this
matrix is most peculiar. The first thing to notice is that

p↑↑ = p↓↓ = p→→ = p⊗⊗ = 0

If the biqubit is made of two neutrons and has been prepared in this special state,
the probability of finding the neutrons aligned, i.e., both in the |↑〉 state, or both
in the |↓〉 state, or both in the |→〉 state or both in the | ⊗〉 state is. . . zero.
Regardless of how we orient the measuring apparatuses, the qubits (neutrons in this
case) always come out pointing in the opposite directions – even if the measuring
polarizers are far away from each other, but this only as long as the neutrons are
still described by (|↑〉A⊗ |↓〉B− |↓〉A⊗ |↑〉B) /

√
2, which is not going to be forever,

because this peculiar biqubit state is going to depolarize faster even than single-
qubit polarized states.

The upper left corner of matrix pAB is normalized. States |↑〉A⊗ |↑〉B , |↑〉A⊗ |↓
〉B , |↓〉A⊗ |↑〉B and |↓〉A⊗ |↓〉B constitute the physical basis of the system and

p↑↑ + p↑↓ + p↓↑ + p↓↓ = 1

The remaining entries in the matrix describe measurements against directions
that are perpendicular to each other, for example, if qubit A is measured against
ex and qubit B is measured against ey, then the probability associated with the
outcome is p→⊗ = 1/4. This result is consistent with the assumption that both
qubits in this state must always be found pointing in the opposite directions. So,
for example, if qubit A is found pointing in the ex direction, which on the whole is
going to be 1/2 of all cases associated with this measurement, then qubit B should
point in the −ex direction, but when measured against the ey direction, half of all
qubits B will emerge pointing in the ey direction and the other half pointing in
the −ey direction. And so the probabilty of finding that qubit A points in the ex

direction and qubit B points in the ey direction is 1/2× 1/2 = 1/4.
There are three other similar states, whose probability matrix can be computed

the same way. They are

| Ψ+〉AB =
1√
2

(|↑〉A⊗ |↓〉B+ |↓〉A⊗ |↑〉A) (5.4)
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ρAB =
1
4

(
1A ⊗ 1B + σxA ⊗ σxB + σyA ⊗ σyB − σzA ⊗ σzB

)

pAB =




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗


 =

1
4




0 2 1 1
2 0 1 1
1 1 2 1
1 1 1 2




This state describes a biqubit system of “total spin 1” but with a zero component
in the ez direction. When projected on either ex or ey both 1/2-spins of the biqubit
align and add up. But when projected on ez the spins counter-align, and so the
projection of the total spin on this direction is zero.

Recall that (|↑〉A⊗ |↓〉B− |↓〉A⊗ |↑〉B) /
√

2 was characterized by 1/2-spins counter-
aligning in any direction – that state was therefore a “total spin 0” state.

The next state is:

| Φ−〉AB =
1√
2

(|↑〉A⊗ |↑〉B− |↓〉A⊗ |↓〉A) (5.5)

ρAB =
1
4

(
1A ⊗ 1B − σxA ⊗ σxB + σyA ⊗ σyB + σzA ⊗ σzB

)

pAB =




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗


 =

1
4




2 0 1 1
0 2 1 1
1 1 0 1
1 1 1 2




This state is similar to (|↑〉A⊗ |↓〉B+ |↓〉A⊗ |↑〉B) /
√

2, meaning that this is also a
“total spin 1” state, but this time it is the ex component of the spin that is missing.
When projected on this direction, both spins counter-align, but they align when
projected on ez or ex.

And finally we have

| Φ+〉AB =
1√
2

(|↑〉A⊗ |↑〉B+ |↓〉A⊗ |↓〉A) (5.6)

ρAB =
1
4

(
1A ⊗ 1B + σxA ⊗ σxB − σyA ⊗ σyB + σzA ⊗ σzB

)

pAB =




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗


 =

1
4




2 0 1 1
0 2 1 1
1 1 2 1
1 1 1 0




which is like the other two states above, i.e., a “total spin 1” state, with the ey

component missing.
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Observe how adept the unitary formalism is at hiding the full physical
characterizations of these states. We have to go through a number of quite
complicated transformations to arrive at the probability matrices.

The density matrix (or quaternion) formalism is somewhat better. With
a little practice one can see the actual probability matrices hiding inside ρAB .

The fiducial formalism gives us the probability matrices explicitly. Alas,

for three qubits pABC is going to be a cube, and a hypercube for four qubits

and at this stage the fiducial representation quickly becomes too complex.

States | Ψ−〉AB (equation (5.2)), | Ψ+〉AB (equation (5.4)), | Φ−〉AB (equation
(5.5)) and | Φ+〉AB (equation (5.6)) are said to be entangled . The verb to entangle
means (1) to wrap or twist together – there is indeed a degree of togetherness
in these states that, as we shall see later, cannot be explained by naive classical
physics reasoning based on the concept of local realism1, and leads to amusing
paradoxes. It also means (2) to involve in a perplexing or troublesome situation –
and this meaning is right on the spot too. The paradoxes mentioned above have
been perplexing physics community ever since John Stewart Bell (1928-1990) came
up with their concise mathematical characterization in 19642 [3], [4]. To make
things worse they are not just theoretical paradoxes to be contemplated by arm-
chair philosophers. They have all been confirmed by elaborate experiments [18],
and have become fundamental to quantum computing.

In memory of John Bell, states | Ψ−〉AB , | Ψ+〉AB , | Φ−〉AB and | Φ+〉AB are
called Bell states.

How do Bell states differ from separable biqubit states? Well, we already know
that they can’t be separated from the unitary formalism, but how does this manifest
on the fiducial formalism level?

A biqubit state that is made of two separate qubits, each in its own well defined
state that may be a mixture, has the following fiducial representation:

pAB = pA ⊗ pB

=
1
4


ς1A +

∑

i=x,y,z

ri
AςiA


⊗


ς1B +

∑

j=x,y,z

rj
BςjB




1. . . but it can be explained by less naive classical physics reasoning that abandons the locality
assumption [4] [8] [14].

2The paradoxes themselves go further back to Einstein, Podolsky and Rosen, who discussed
one such paradox in their paper in 1935 [16]. But EPR, as the trio is affectionately called, did
not produce an experimentally verifiable formula that could be used to check which way the chips
fall.
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=
1
4

(
ς1A ⊗ ς1B +

∑

j=x,y,z

rj
Bς1A ⊗ ςjB +

∑

i=x,y,z

ri
AςiA ⊗ ς1B

+
∑

i=x,y,z

∑

j=x,y,z

ri
Ar

j
BςiA ⊗ ςjB

)

where r2
A ≤ 1 and r2

B ≤ 1 too, and where the equality would hold for pure single
qubit constituents. Analogous expressions can be constructed for the quaternion
and density matrix formalisms by merely replacing varsigmas with sigmas.

We are going to call such state a simple separable state. Its individual constituents
may not be pure and the resulting biqubit may not be pure either, but it is made
of just one pair of well defined separate qubits, pure or not.

Comparing the above expression with Bell states and remembering that varsigmas
constitute bases in the fiducial spaces of both qubits, we find the first important
difference: all Bell states are of the form

1
4

(
ς1A ⊗ ς1B ± ςxA ⊗ ςxB ± ςyA ⊗ ςyB ± ςzA ⊗ ςzB

)

There are no ς1A ⊗ ςjB and no ςiA ⊗ ς1B terms here. This immediately suggests
that rA = rB = 0. And yet ri

Ar
i
B = ±1. How can this be?

Consider a mixture of two simple separable biqubit states:

PαpAα ⊗ pBα + PβpAβ ⊗ pBβ

where Pα + Pβ = 1 and they’re both positive.
The fiducial representation of the mixture is:

1
4

(
ς1A ⊗ ς1B

+
∑

i=x,y,z

(
Pαr

i
Aα + Pβr

i
Aβ

)
ςiA ⊗ ς1B

+
∑

i=x,y,z

(
Pαr

i
Bα + Pβr

i
Bβ

)
ς1A ⊗ ςiB

+
∑

i,j=x,y,z

(
Pαr

i
Aαr

j
Bα + Pβr

i
Aβr

j
Bβ

)
ςiA ⊗ ςjB

)

Observe that in general

Pαr
i
Aαr

j
Bα + Pβr

i
Aβr

j
Bβ 6=

(
Pαr

i
Aα + Pβr

i
Aβ

) ·
(
Pαr

j
Bα + Pβr

j
Bβ

)
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Therefore if we want to admit a description of mixtures of simple separable biqubit
states, each of which may be made of two qubits in some mixed states too, and
such a finite mixture is called a separable state, we must allow the following, more
general fiducial representation:

pAB =
1
4

(
α ς1A ⊗ ς1B +

∑

j=x,y,z

rj
Bς1A ⊗ ςjB +

∑

i=x,y,z

ri
AςiA ⊗ ς1B

+
∑

i,j=x,y,z

xij
ABςiA ⊗ ςjB

)
(5.7)

where α may not necessarily be 1 and xij
AB may be independent of ri

A and rj
B .

There would be nine such xij
AB coefficients, plus three ri

A coefficients and three
rj
B coefficients, plus the α – altogether sixteen real numbers are therefore needed

to fully characterize a biqubit state. This number may be reduced to fifteen by
imposing a normalization condition such as

p↑↑ + p↑↓ + p↓↑ + p↓↓ = 1

which implies that α = 1.
It is possible to construct complicated biqubit mixtures made of many compo-

nents, more than just two, that can get pretty close to an entangled state such as
the Bell state | Ψ−〉AB . This is why it may be sometimes difficult to distinguish
between entangled and mixed states experimentally, especially if neither is pure.

Consider, for example, a 50/50 mixture of two simple separable biqubit states
described by the following two pairs of vectors:

(rAα, rBα) and (rAβ , rBβ)

such that
rAα = −rAβ and rBα = −rBβ

For this mixture we’ll get that

Pαr
i
Aα + Pβr

i
Aβ = 0

Pαr
i
Bα + Pβr

i
Bβ = 0

but

xij
AB = Pαr

i
Aαr

j
Bα + Pβr

i
Aβr

j
Bβ

= 0.5
(
ri
Aαr

j
Bα + (−ri

Aα)(−rj
Bα)

)

= ri
Aαr

j
Bα
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So here we end up with a state that looks somewhat similar to | Ψ−〉AB . It’s rA

and rB vanish, but its xAB does not. At the same time though, its xAB is not the
same as the one we got for | Ψ−〉AB . We cannot make a diagonal matrix with none
of the diagonal elements vanishing out of ri

Aαr
j
Bα.

It turns out that pAB of an entangled state cannot be reproduced by any fi-
nite mixture of simple separable biqubit states [30]. But this is not a criterion
that is easy to use, especially when we deal with experimental data that is always
contaminated with some error.

For a simple separable biqubit state the following trivial observations hold.
If ri

A and rj
B do not vanish and xij

AB = ri
Ar

j
B then the biqubit is clearly separable

into two individual qubits. If one or both ri
A and rj

B vanish, then one or both
constituent qubits are fully depolarized. In this case xij

AB must vanish too, if the
biqubit is to be separated into two individual qubits.

The separability of xij
AB into ri

A and rj
B can be tested easily. The following must

hold:

rA · xAB = r2ArB , and

xAB · rB = rAr
2
B

Another obvious feature of a separable xAB in this context is that

det xAB =
∑

i,j,k∈{x,y,z}
εijkx

xixyjxzk =
∑

i,j,k∈{x,y,z}
εijkr

x
Ar

i
Br

y
Ar

j
Br

z
Ar

k
B = 0

because εijk is fully anti-symmetric whereas ri
Br

j
Br

k
B is fully symmetric. The van-

ishing of det xAB is a necessary condition, but not a sufficient one. Still, it is good
enough if we just want to check if a given state can at all be separated into two
individual qubits.

The above considerations are presented in terms of varsigma coefficients.
But when the actual measurements are made, the probabilities that are as-
sembled into a matrix pij are not varsigma coefficients. They are canonical
coefficients instead. How are we to find ri

A, rj
B and xij

AB? This can be done
easily by contracting p with appropriate combinations of Pauli forms, namely:

ri
A = 〈ςi

A ⊗ ς1
B , pAB〉

rj
B = 〈ς1

A ⊗ ςj
B , pAB〉

xij
AB = 〈ςi

A ⊗ ςj
B , pAB〉

where i and j run through x, y and z.

Another way is to replace the canonical vectors in pAB =
P

ij pij
ABeiA ⊗

ejB with Pauli vectors using equations (2.12) on page 63, since Pauli vectors

are duals of Pauli forms.
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5.2 Pauli exclusion principle

But how do we know entangled states exist at all? They can’t be made by merely
placing two qubits next to each other. This only yields a non-entangled biqubit,
i.e., two separate qubits.

The idea that pairs of elementary particles can be entangled goes all the way
back to Wolfgang Pauli (1900-1958). Today we know that we can even entangle
macroscopic objects, sic!, but back then in 1925 quantum mechanics was strictly a
science of atoms and elementary particles. After Niels Bohr (1885-1962) presented
his model of the hydrogen atom in 1913 that predicted correctly hydrogen’s energy
levels, well, at least until physicists had a closer look and found that there was
more to it, people turned to other atoms trying to understand their structure. It
soon became apparent that even as simple an atom as helium was immensely more
complicated than hydrogen. For starters, helium had two separate families of energy
levels with seldom observed transitions between one and the other. For a while
people even thought that there were two different types of helium configurations.
Other atoms’ spectra were even more complex.

Eventually Pauli figured out that he could account for some features of alca-
line atoms spectra if he (1) postulated that electrons had an additional as yet
unrecognized degree of freedom (later called spin) and (2) that

“there can never be two or more equivalent electrons in an atom for
which . . . the values of all quantum numbers . . . are the same. If an
electron is present in the atom for which these quantum numbers . . .
have definite values, this state is occupied [42].”

At the time quantum mechanics did not exist in the form we know it today.
Werner Karl Heisenberg (1901-1976) was yet to publish his 1925 paper on the
“matrix mechanics” and Erwin Schrödinger was yet to publish his 1926 paper on
the “wave mechanics”. When Paul Dirac (1902-1984) finally merged the matrix and
the wave mechanics into quantum mechanics in 1926 and Kronig, Uhlenbeck and
Goudsmit identified Pauli’s additional degree of freedom as spin it became clear
that the way to express Pauli’s principle was to antisymmetrize the multielectron
wave function. For example, for two electrons A and B whose individual wave
functions may be | Ψ〉A and | Φ〉B their combined wave function in an atom would
have to be

1√
2

(| Ψ〉A⊗ | Φ〉B− | Φ〉A⊗ | Ψ〉B)
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This way if both functions are identical, i.e., the quantum numbers inside | Ψ〉 and
| Φ〉 are all the same, so that | Ψ〉 = | Φ〉, the combined wave function is zero. This
trick captures the Pauli principle automatically.

In summary, it is the spectra of multielectron atoms that tell us that entangled
states such as (|↑〉A⊗ |↓〉B− |↓〉A⊗ |↑〉B) /

√
2 exist.

The Pauli exclusion principle applies to identical particles only, i.e., they must be
both of the same type, e.g., two electrons, two neutrons or two protons. They must
be fermions too, i.e., their spin must be an odd multiple of ~/2. If the particles
are bosons, which means that their spin is an even multiple of ~/2, examples of
such particles are photons and alpha particles, then their wave functions must be
symmetric. This has important macroscopic consequences in terms of statistics and
phenomena such as superconductivity and superfluidity.

In layman terms fermions hate being like the other guys. They’re indi-
vidualistic. If there is a fermion nearby that does something and you’re a
fermion too, you’ll do your best to dress differently, drive a different car, look
the other way, and preferably get out of the neighbourhood as soon as an
opportunity arises. On the other hand bosons love to be together and to
be alike. “I’m having what she’s having”. If there is a boson driving on a
freeway, soon there’ll be the whole pack of them driving in the same direction
right next to each other – this is how superfluidity works.

Cats are fermions. Dogs are bosons.

Identical particles as such are not very useful for computing. The reason for this is
that they cannot be addressed individually. In quantum computing the best results
are obtained if qubits are associated with different quantum objects, for example
with different nuclei in a molecule. But identical particles can be combined into
collective states. Here a quantum state of interest may be associated not with an
individual electron, but with a large number of electrons all forced into a single
quantum configuration.

But how can electrons be forced into a collective if they are fermions? This
can happen only if there is an intermediary agent present. The agent acts like a
glue. Electrons in a crystal lattice of niobium, for example, are held together by
phonons. Pairs of such phonon-glued electrons, called Cooper pairs, behave like
bosons, because their combined spin is an even multiple of ~/2. Since Cooper pairs
are bosons, large collective states are possible. These states are responsible for
superconductivity.

Because all elementary particles can be classified either as fermions or as bosons
and these can only exist in entangled states, an obvious question is how come we
don’t normally see entanglement in the macroscopic world around us – apart from
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the rather special phenomena of superfluidity and superconductivity, both of which
require extremely low temperatures?

The answer to this is that entanglement is technically a superposition. It is a
superposition in the biqubit Hilbert space. The biqubit superpositions depolarize
just as quickly, if not more so, as single qubit superpositions. The more a biqubit
interacts with the environment the faster it depolarizes. And so after a short while
the entangled state turns into a mixture of separable biqubit basis states, similarly
to what we have seen for a single qubit in the quantronium example.

5.3 A superconducting biqubit

The two quantum electronic devices that are discussed in this section were con-
structed to demonstrate the entanglement of two qubits.

The first one was made by a group of scientists from the University of Maryland
in 2003 [5] and the second one three years later by a group from the University of
California, Santa Barbara [50].

A Josephson junction, which is constructed by inserting a very thin insulator
between two superconductors, is characterized by the so called critical current . The
junction is biased by pushing current through it. Up to the critical current, pairs of
electrons, the Cooper pairs, flow through the junction unimpeded and without any
voltage drop across the junction. This is called the DC Josephson junction regime.
But when the current exceeds the critical current, then the voltage drop across the
junction suddenly appears and the current begins to oscillate rapidly. This is called
the AC Josephson junction regime.

When the junction is biased somewhat below the critical current, i.e., still in the
DC Josephson regime, the junction’s inductance and capacitance form an anhar-
monic LC resonator with an anharmonic potential U that can be approximated by
a cubic function of position within the junction, as shown in figure 5.1 (A). This is
sometimes called a “tilted washboard potential”. Strictly speaking U is a function
of the phase γ of the Cooper pairs wave function within the circuit (they all have
the same wave function), but within the junction the phase changes approximately
linearly with position and outside of the junction the phase is approximately con-
stant. The left bend of the washboard curve forms a natural potential well, within
which discrete energy levels form, and the right bend a natural potential barrier,
through which Cooper pairs trapped in the well may tunnel. The height ∆U(I) of
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the potential barrier is a function of the junction bias current and is given by

∆U(I) =
2
√

2I0Φ0

3π

(
1− I

I0

)3/2

,

where I0 is the critical current and Φ0 = h/2e, where h is the Planck constant.
The potential barrier vanishes when I → I0. The energy at the bottom of the well
corresponds to the classical plasma oscillation frequency ωp(I) given by

ωp(I) =

√
2
√

2πI0
Φ0C

(
1− I

I0

)1/4

,

where C is the junction capacitance. The ωp(I) also vanishes when I → I0, but
more slowly than ∆U(I).

The discrete energy levels within the well can be observed by adding small mi-
crowave pulses to the bias DC current. If the frequency of the pulse matches the
transition frequency between the two levels drawn in the diagram, Cooper pairs
trapped within the lower level absorb the energy and jump to the upper level,
which is characterized by a large tunneling rate. And so they then tunnel through
the barrier. This is illustrated by the right-pointing arrow in figure 5.1 (A). Af-
ter the tunneling event the junction becomes momentarily depleted of carriers and
behaves like an open switch across which a macroscopically measurable voltage
develops.

Such qubits, which are made of collective excitations of up to 109 paired electrons,
depending on the size of the junction, are called phase qubits. Recent advances in
the phase qubit technology made it possible to carry out their full characterization.
The group from Santa Barbara was able to view the full traversal of the qubit,
across the Bloch ball during a Ramsey measurement [51]. Like the quantronium
circuit, phase qubits are macroscopic devices that behave quantum-mechanically.
Also, like the quantronium circuit, they have to be immersed in a cryo-bath, close
to the absolute zero, to work.

But let us return to the Maryland group biqubit shown in Figure 5.1 (B). Here
we have two phase qubits characterized by their critical currents Ic1 and Ic2 of
14.779µA and 15.421µA respectively, both shunted by capacitors Cj of 4.8 pF each,
which help stabilize the qubits, and coupled through the capacitor Cc of 0.7 pF.
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Figure 5.1: A Josephson junction biqubit. Figure (A) illustrates how a two-level
quantum system, i.e., a qubit, forms within the junction when it is biased in a
special way. Figure (B) shows the schematic diagram of the device. Figures (C)
and (D) show the photographs of the device.

Qubit #1, i.e., the one on the left, is DC biased and the bias current that flows
through it, Ib1, is 14.630µA. Qubit #2, the one on the right, is biased with a linear
ramp that in effect allows for repetitive scanning of the biqubit parameters.

Figure 5.1 (C) shows the photograph of the actual device. There are two coupling
capacitors in the device visible in the centre of the photograph. The role of the
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lower capacitor is to short out parasitic inductance in the ground line. It forms
the effective Cc together with the upper capacitor. The Josephson junctions are
inside the two narrow horizontal features on both sides of the photograph, one of
which is shown in magnification in figure 5.1 (D). Here we can see two strips made
of niobium that overlap in a square box a little to the left of the center of figure D.
This is the junction itself. The two overlapping niobium strips are separated by
a thin layer of aluminum oxide. Each Josephson junction is quite large, the side
of the box being 10µm long. The distance between the two junctions is 0.7 mm -
which is huge by quantum mechanics standards. It is a macroscopic distance.

The biqubit is observed in a way that is very similar to a single phase qubit
observation technique. It has a certain characteristic and discrete energy spectrum.
A microwave signal Im (see figure 5.1 (B)) is applied through the bias lines to the
right qubit directly, but through the coupling capacitor to the left qubit too—so
in effect it is the whole biqubit that is irradiated. This induces transitions from
the ground state of the biqubit to its higher energy states, but only if the applied
microwave signal has its frequency matching the energy gap. Higher energy states
are closer to the knees of the washboard potentials for both qubits, and so they
have a higher probability of escaping from the potential wells of both junctions.
This creates an open circuit condition, because the junctions run out of carriers
and this, in turn, manifests as surges of DC voltage V in the right hand side of the
circuit and can be detected easily.

Ramping Ib2 for a microwave signal of fixed frequency has the effect of changing
the parameters of the biqubit so that eventually we come across the ones for which
the energy absorption takes place.

This is illustrated in figure 5.2 (A). Here the microwave frequency f is set to
4.7 GHz. ∆ is the observed escape rate normalized against the escape rate measured
in the absence of the microwave agitation, i.e., ∆ = (Γm − Γ) /Γ, where Γm is the
microwave induced escape rate and Γ is the escape rate in the absence of the
microwave signal. The normalized escape rate is plotted against the bias current
Ib2.

Let us call the lower energy state | 0〉1,2 and the higher energy state | 1〉1,2 for
qubits #1 and #2 respectively.

There is a well defined Lorentzian absorption peak in Figure 5.2 (A) that corre-
sponds to a transition

| 0〉1⊗ | 0〉2 → 1√
2

(| 0〉1⊗ | 1〉2− | 1〉1⊗ | 0〉2) .
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Figure 5.2: Figure (A) – absorption spectrum of the biqubit for a fixed microwave
frequency f = 4.7 GHz in function of the Josephson junction bias current Ib2. Fig-
ure (B) – a two-dimensional map obtained by varying both the microwave frequency
f and the Josephson junction bias current Ib2.

By varying both f and Ib2 and repeating the measurement for each point in the
(f, Ib2) plane up to 100,000 times, sic!, the researchers arrived at the histogram map
shown in figure 5.2 (B). The colour in the histogram corresponds to the normalized
escape rate: red means high, blue means low. For a given value of Ib2 there are two
absorption peaks that correspond to transitions:

| 0〉1⊗ | 0〉2 → 1√
2

(| 0〉1⊗ | 1〉2± | 1〉1⊗ | 0〉2) .

The tiny white circles mark the exact measured locations of the absorption peaks.
Solid white lines mark theoretically predicted3 locations of the absorption peaks for

3The theoretical analysis of the biqubit and the resulting computations are quite non-trivial
and beyond the scope of this text. Interested reader will find more details in [5].
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the transitions to the entangled states investigated here. The black dashed lines
correspond to transitions between the ground state | 0〉1⊗ | 0〉2 and the two un-
entangled states | 0〉1⊗ | 1〉2 and | 1〉1⊗ | 0〉2.

The agreement between the measured data and the theoretical predictions based
on the assumption that the transitions are from the ground state to one of the two
entangled states is quite exceptional.

The measured dependency of the transition rate on the bias current Ib2 can be
Fourier transformed into the frequency space. The width of the absorption peak in
this space yields the lifetime of the entangled state, which turns out to be about
2 ns. After this time, the state decays into a mixture of separable states.

What is so remarkable about this beautiful experiment (and device) is that not
only does it demonstrate the existence of entangled states, but it entangles two
heavy macroscopic objects separated by a large macroscopic distance of 0.7 mm.
It is the cooling to the near absolute zero that makes it possible for the entangled
state of the two phase qubits to stretch this far. Cooling freezes off interactions
with the environment that would otherwise destroy both the entanglement and the
qubits themselves.

We see here again that entangled states and quantum behavior are not restricted
to very small objects such as elementary particles and to very small distances such
as encountered in the interiors of alcaline atoms.

On the other hand, if the only evidence in favour of the existence of entangled
states were atomic or electronic device spectra we might be justified in holding
back our enthusiasm. After all, one could perhaps come up with another theory that
would reproduce the observed spectra in some other way. To be truly convinced that
entanglement is not just an artifact of quantum calculus but a physical phenomenon
we need more evidence. We need to construct an entangled state and then perform
a full set of measurements on it so as to reproduce probability matrices such as the
ones derived for the Bell states in section 5.1.

This has been done for pairs of protons and pairs of photons, the latter separated
by a distance as large as 600 m [2]. It has been done even for two macroscopic
samples of caesium gas each comprising 1012 atoms [34]. And the Santa Barbara
group did this for a phase biqubit, but it took full three years of technology and
methodology improvements after the Maryland biqubit demonstration.

A full set of quantum state measurements that reproduces its whole probability or
density matrix is called quantum state tomography. It is a difficult measurement.
Recall that in our quantronium example we only saw the rz component of the
polarization vector r. But here we need to measure rx, ry and rz for both qubits
as well as correlation coefficients xij .
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The Santa Barbara researchers demonstrated full quantum state tomography for
a single qubit first, and for a biqubit. The devices they used in their experiments
are shown in Figure 5.3.

Figure 5.3: A schematic diagram of the Santa Barbara biqubit. (A) a single qubit
diagram that shows qubit manipulation and measurement circuitry, (B) and (C)
the LC resonator potential during qubit manipulation and measurement, (D) a
simplified biqubit diagram that shows the coupling capacitor Cx.

A distinguishing feature of this device is qubit isolation. We no longer apply the
bias, the measuring pulse, and the microwave signal directly to the qubit’s circuit.
Instead, each qubit is manipulated and measured through the loop inductance
of L = 850 pH. The shunting capacitors that stabilize the qubits both have the
capacitance C = 1.3 pF and the coupling capacitor is Cx = 3 fF. Amorphous silicon
nitride is used as a dielectric in the shunting capacitors, because its loss tangent is
very small, of the order of 10−4, which yields a fairly long energy relaxation time
of about 170 ns.
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When operating normaly both qubits are biased as shown in Figure 5.3 (B), but
they are conditioned so that only the two bottom energy levels, | 0〉 and | 1〉 are
filled. When the qubits are measured, a strong current pulse Iz is applied that
changes the junction bias as shown in Figure 5.3 (C). The | 1〉 state is then flushed
out of the cubic well and this event is picked up by the on-chip SQUID amplifier.

A SQUID, the acronym stands for Superconducting Quantum Interference

Device, is another extremely sensitive Josephson junction device that is used

to measure changes in the magnetic field flux.

Both qubits are biased so that the transition between each qubit’s | 0〉 and
| 1〉 states occurs at ω10 = 2π × 5.1 GHz. An experiment begins by freezing and
waiting—both qubits drop naturally to | 0〉. Section 5.11.4, page 260, will explain
in more detail how this happens, but the intuitive understanding that when things
are left on their own in a cool place they calm down, is just fine at this stage. Now
we flip qubit #2 by sending it an appropriate Rabi pulse of 10 ns duration and the
biqubit ends up in the | 0〉⊗ | 1〉 state. Because this state is not an eigenstate of
the biqubit Hamiltonian, the biqubit evolves as follows

| Ψ12(t)〉 = cos
(
St

2~

)
| 0〉⊗ | 1〉 − i sin

(
St

2~

)
| 1〉⊗ | 0〉,

where S/h = 10 MHz. So we don’t have to do anything to rotate the biqubit at this
stage other than wait a certain t. Having waited a given t we can measure the qubit
and by repeating the experiment 1,000 times we can arrive at the probabilities P00,
P01, P10 and P11. The observed probabilities are consistent with the idea that the
biqubit becomes entangled after about 16 ns forming a state

1√
2

(| 0〉⊗ | 1〉 − i | 1〉⊗ | 0〉) .

Waiting while a qubit, or a biqubit performs a natural (e.g., Larmor) rotation is an
often deployed trick in quantum computing and as such constitutes a gate.

In order to fully diagnose the state and make sure that the qubit is indeed en-
tangled we have to measure probabilities of finding the qubits in states such as
|→〉 and | ⊗〉 as well. In other words, we must perform the full tomography of the
biqubit state.

We do this by subjecting the biqubit to a yet another Rabi pulse that rotates its
individual qubits by 90◦ about the ex or ey directions prior to the measurement.

Repeating biqubit preparation and measurement procedures 20,000 times for each
combination of directions we obtain probabilities P↑↑, P↑→, and similar and then
assemble them into a density matrix shown in Figure 5.4.
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Figure 5.4: State tomography of the Santa Barbara biqubit.

The upper pannel of Figure 5.4 shows the results obtained from the raw proba-
bility data, and the lower pannel shows the density matrix “corrected” for known
inefficiencies of single qubit measurements.

The expression

F = Tr
√

σ1/2ρexpσ1/2

where σ is the theoretically expected density matrix and ρexp is the experimentally
measured one provides us with a convenient estimate of the combined accuracy of
the state preparation and its tomography in the form of a single number. This
number is called fidelity of the reconstructed (from the measurements) quantum
state. If ρexp = σ the fidelity is 100%.

The fidelity of the state reconstructed in Figure 5.4 (B), i.e., in the upper pan-
nel, is 75% and the fidelity of the state corrected for the known measurement
inefficiencies of single qubits, shown in the lower pannel, is 87%.

An in-depth theoretical analysis of the device that takes various environmental
effects and known characteristics of the device into account shows that the fidelity
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should be 89%. This leaves only 3% of the infidelity unaccounted for, which is a
very impressive quantum device modeling result.

Is the observed state indeed entangled? An inspection of the density matrix
suggests so. The imaginary components | 01〉〈10 | and | 10〉〈01 | have almost the
same value as real components | 01〉〈01 | and | 10〉〈10 |, which is what we would
expect for the state (| 0〉⊗ | 1〉 − i | 1〉⊗ | 0〉) /√2.

But isn’t it possible that a mixture could be constructed that would get pretty
close to the observed density matrix? Is there a way to demonstrate unequivocally
that the observed state is indeed entangled by some well posed criterion other than
just looking at and comparing the bars on the graph? This, as it turns out, is a
non-trivial question, the answer to which was found only in 1996. We are going to
discuss the solution to this problem in Section 5.10, page 234.

5.4 An atom and a photon

Demonstrating entanglement with elaborate quantum electronic circuits even though
of obvious practical interest may leave one pondering if a shortcircuit or some spe-
cific circuit design feature is not responsible for the observed correlations rather
than fundamental physics. After all, these are complicated devices. Their fab-
rication is difficult and their operation complex. This is, of course, a sentiment,
because a great deal of tests, checks and theoretical analysis goes into the design
of the device and the experiment. Nevertheless, yielding to this sentiment we may
ask if entanglement can be demonstrated using just two atoms or just two elemen-
tary particles? Such a demonstration would, at least in principle, prove that the
observed behaviour reflects the law of nature and is not an electronic artifact.

Numerous experiments of this type have been performed and are still being per-
formed today. Photons are especially suitable, because they are relatively immune
to environmental decoherence—a photon may travel almost undisturbed across the
whole observable universe, to be registered by an astronomer’s telescope, still with
sufficient information content to let us make inferences about its source.

The experiment discussed in this section was carried out by Blinov, Moehring,
Duan and Monroe from the University of Michigan in 2004 [7]. It is perhaps one of
the cleanest and most elegant demonstrations of entanglement. In this experiment
it is a single atom and a single photon emitted by the atom that are entangled and
measured.
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Figure 5.5: A schematic diagram of an apparatus used in the atom-photon entan-
glement experiment.

Figure 5.5 shows a schematic diagram of an apparatus used in the measurement.
A single positively charged ion of cadmium, 111Cd+, is held in an asymmetric-
quadrupole radio frequency trap about 0.7 mm across, to which a magnetic field of
approximately 0.7 Gauss is applied in order to provide the ez direction. The ion is
manipulated by a combination of optical and microwave pulses. In response to these
manipulations the ion emits a single photon, which is collected by the f/2.1 imaging
lens and directed towards the λ/2 waveplate. The waveplate is used to rotate the
photon polarization, which in this setting is like switching from p↑atom↑photon to,
say, p↑atom→photon . The photon is then directed towards a polarizing beamsplitter,
marked as “PBS” in the diagram, and then sent towards one of the two photon-
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counting photomultiplier tubes (PMTs) that can detect a single photon with about
20% efficiency. The PMT detector D1 is set up to detect photons polarized in the
plane of the figure, these are called | V 〉-photons, and the other detector, D2, is
set up to detect photons polarized in the plane perpendicular to the plane of the
figure, these are called | H〉-photons. The | V 〉 and | H〉 states of the photon are
like qubit states | 0〉 and | 1〉.

The purpose of the experiment is to demonstrate the quantum entanglement
between the ion and the photon emitted by it. Whereas the state of the photon is
measured by the PMT detectors shown on top of the diagram, reading the state of
the ion is performed with a specially polarized 200µs optical detection pulse beamed
at the ion. The ion responds to the pulse by fluorescing differently depending on
its state. Here the ion qubit read-out efficiency is greater than 95%.

Prior to the read-out the ion’s quantum state can be subjected to a Rabi rota-
tion by irradiating it with a microwave pulse. So this way we can measure, say,
p↑atom↑photon and p→atom↑photon as well.

The sequence of operations the ion is subjected to is roughly as follows.
First the ion is initialized in the |↑〉 state by a combination of a 30µs polarized

optical pulse and a 15µs microwave rotation.
It is then excited to a short lived higher energy state called 2P3/2 | 2, 1〉 by a

50 ns polarized optical pulse. The 2P3/2 | 2, 1〉 state decays after about 3 ns either
back to |↑〉 or to a state with a somewhat higher energy here called |↓〉. The decay
of 2P3/2 | 2, 1〉 to |↑〉 is accompanied by emission of an | H〉 photon and the decay
of 2P3/2 | 2, 1〉 to |↓〉 is accompanied by emission of a | V 〉 photon:

2P3/2 | 2, 1〉 → |↑〉+ | H〉
2P3/2 | 2, 1〉 → |↓〉+ | V 〉

The energy gap that separates |↑〉 and |↓〉 is about 1 MHz.
After the initial preparation procedure the ion is allowed to rest for about 1µs

and then it is irradiated again with another 15µs microwave rotation pulse. Finally
the ion is irradiated with a 200µs polarized optical detection pulse that lets us read
the ion resident qubit.

Theoretical analysis of this process reveals that the ion and the emitted photon
must be entangled and the resulting state is

(| H〉⊗ |↑〉+ 2 | V 〉⊗ |↓〉) /
√

3

Because the photon detector is markedly less efficient than the ion qubit detector
the experimenters measure probabilities of detecting an atomic qubit state |↑〉 or
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|↓〉 conditioned upon detecting an emitted photon either in the | H〉 or in the | V 〉
states, given 1,000 successful trials.

Figure 5.6: Measured conditional probabilities in the original basis – no atomic or
photonic qubit rotation before the measurement.

The results for the original basis, i.e., no atomic or photonic rotation before the
measurement, are shown in figure 5.6. Here we find that

(
p↑,H p↑,V

p↓,H p↓,V

)
≡

(
p↑↑ p↑↓

p↓↑ p↓↓

)
=

(
0.97± 0.01 0.06± 0.01
0.03± 0.01 0.94± 0.01

)

Now the experimenters rotate the λ/2 waveplate and the atomic qubit (by apply-
ing a microwave pulse after the emission) so as to rotate both through a Bloch angle
of 90◦ eventually. The rotation of the atom-resident qubit is not clean though. It
is loaded with an additional phase factor due to the phase of the microwave signal
– this is really the angle that the atomic qubit subtends with the photonic qubit in
the ex× ey plane. This angle can be adjusted and varying it results in the correla-
tion fringes shown in figure 5.7 (a). The fringes correspond to p→→ and p→←. By
locking ourselves on the point of highest correlation in figure 5.7 (a) we can finally
arrive at the results shown in figure 5.7 (b).
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Figure 5.7: Measured conditional probabilities after a Bloch rotation of both qubits
by 90◦.

The actual probabilities are
(
p→→ p→←

p←→ p←←

)
=

(
0.89± 0.01 0.06± 0.01
0.11± 0.01 0.94± 0.01

)

This is not full tomography as we have seen done for the Santa Barbara qubit,
but we can clearly observe correlations. Both qubits appear aligned for both mea-
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surement angles, whereas the probability of finding the qubits counter-aligned is
very low in both cases.

5.5 A biqubit in a rotated frame

Consider the Bell state | Ψ−〉AB for which

pAB =
1
4

(
ς1A ⊗ ς1B − ςxA ⊗ ςxB − ςyA ⊗ ςyB − ςzA ⊗ ςzB

)

We saw in section 4.5, page 130 that Pauli vectors ςi transform like normal 3D
vectors under rotations. So if we were to rotate the polarization filter of qubit A in
the ex × ez plane by angle θA we’d find that

ςxA = cos θAςx′A − sin θAςz′A

ςzA = sin θAςx′A + cos θAςz′A

and similarly if we were to rotate the polarization filter of qubit B in the same
plane by angle θB we’d find that

ςxB = cos θBςx′B − sin θBςz′B

ςzB = sin θBςx′B + cos θBςz′B

What are going to be the probability readings for the biqubit now? We can find
p′AB by rotating its component varsigmas and remembering that:

ς1A = ς1′A

ςyA = ςy′A

ς1B = ς1′B

ςyB = ςy′B

This yields

p′AB =
1
4

(
ς1′A ⊗ ς1′B − ςy′A ⊗ ςy′B

− (cos θAςx′A − sin θAςz′A)⊗ (cos θBςx′B − sin θBςz′B)

− (sin θAςx′A + cos θAςz′A)⊗ (sin θBςx′B + cos θBςz′B)
)
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Let us gather terms that multiply ςx′A⊗ ςx′B , ςx′A⊗ ςz′B , ςz′A⊗ ςx′B and ςz′A⊗
ςz′B :

p′AB =
1
4

(
ς1′A ⊗ ς1′B − ςy′A ⊗ ςy′B

− (cos θA cos θB + sin θA sin θB) ςx′A ⊗ ςx′B

− (− cos θA sin θB + sin θA cos θB) ςx′A ⊗ ςz′B

− (− sin θA cos θB + cos θA sin θB) ςz′A ⊗ ςx′B

− (sin θA sin θB + cos θA cos θB) ςz′A ⊗ ςz′B

)

Recal that

sin (θA − θB) = sin θA cos θB − cos θA sin θB

cos (θA − θB) = cos θA cos θB + sin θA sin θB

consequently

p′AB =
1
4

(
ς1′A ⊗ ς1′B − ςy′A ⊗ ςy′B

− cos (θA − θB) ςx′A ⊗ ςx′B

− sin (θA − θB) ςx′A ⊗ ςz′B

+ sin (θA − θB) ςz′A ⊗ ςx′B

− cos (θA − θB) ςz′A ⊗ ςz′B

)

In order to extract the actual probabilities we need to switch from the rotated
Pauli vectors ςi′ to the rotated canonical basis vectors eα′ , α

′ = 0, 1, 2, 3, as we
did in section 5.1. This leads to the following mappings between ςi′A ⊗ ςj′B and
probability matrices:

ς1′A ⊗ ς1′B =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




ςx′A ⊗ ςx′B =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




ςy′A ⊗ ςy′B =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
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ςz′A ⊗ ςz′B =




1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0




Additionally we need to find matrices for ςx′A ⊗ ςz′B and ςz′A ⊗ ςx′B . Since
ςx′A,B = e2′A,B and ςz′A,B = e0′A,B − e1′A,B it is easy to see that

ςx′A ⊗ ςz′B =




0 0 0 0
0 0 0 0
1 −1 0 0
0 0 0 0




ςz′A ⊗ ςx′B =




0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0




Combining it all together yields

p′AB =
1
4

(



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


−




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




− cos (θA − θB)




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




− cos (θA − θB)




1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0




− sin (θA − θB)




0 0 0 0
0 0 0 0
1 −1 0 0
0 0 0 0




+ sin (θA − θB)




0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0




)
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We could just add it all up now, but it is convenient to make use of the following
trigonometric identities

1− cos (θA − θB)
2

= sin2 θA − θB

2
1 + cos (θA − θB)

2
= cos2

θA − θB

2

Similar formulae for 1 ± sin (θA − θB) are somewhat clumsier because we end up
with a 90◦ angle thrown in:

1− sin (θA − θB)
2

= cos2
θA − θB + 90◦

2
1 + sin (θA − θB)

2
= sin2 θA − θB + 90◦

2

Let θA − θB = θAB for short, then at long last

p′AB =
1
2




sin2 θAB

2 cos2 θAB

2 sin2 θAB+90◦
2

1
2

cos2 θAB

2 sin2 θAB

2 cos2 θAB+90◦
2

1
2

cos2 θAB+90◦
2 sin2 θAB+90◦

2 sin2 θAB

2
1
2

1
2

1
2

1
2 0


 (5.8)

Observe that for θA = θB so that θAB = 0 the probability matrix does not change
at all, i.e., for the Bell state | Ψ−〉AB the probability of finding both qubits aligned
in any direction, not just the original ex, ey and ez is zero.

But evaluating probabilities at angles other than θAB = 0 or θAB = 90◦ (which
is what basically sits in terms such as p↑→) reveals something quite peculiar. Let
us evaluate

p↑↗ + p↗→ − p↑→

where ↗ stands for a polarization axis that is tilted by 45◦. This can be rewritten
as

p↑↑(0◦, 45◦) + p↑↑(45◦, 90◦)− p↑↑(0◦, 90◦)

where the first angle in the bracket is θA and the second angle is θB , or in terms of
θAB :

p↑↑(45◦) + p↑↑(45◦)− p↑↑(90◦)

=
1
2

sin2 45◦

2
+

1
2

sin2 45◦

2
− 1

2
sin2 90◦

2
= sin2(π/8)− 0.5 · sin2(π/4) = −0.10355 (5.9)
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So what?
The fact that this number is negative tells us an insightful story about the world

of quantum physics.

5.6 Bell inequality

Let us consider
p↑A,↗B + p↗A,→B (5.10)

for the Bell state | Ψ−〉AB . We have marked the arrows clearly with A and B,
because soon we are going to replace B with A.

Recall that for the Bell state | Ψ−〉AB qubit B is always an inverted image of
qubit A. When measured, it always points in the opposite direction, regardless of
which direction we choose.

So we may hypothesize that if we were to measure qubit A first, this would
force qubit B automatically into a reverse image of A. Therefore performing a
measurement on A first and then on B is really like performing a measurement on
A, then flipping what comes out and measuring it again the way that B would be
measured.

But we could just as well reverse the order of measurements on A and B or
perform both measurements simultaneously and the result in terms of probabilities
still ought to be the same, as long as there isn’t enough time between one and the
other measurement for the other qubit to interact with the environment, since this
may change the state of the other qubit in a way that no longer depends on the
first qubit only.

Some quantum mechanics purists object to this reasoning saying that quantum
mechanics does not allow for a single qubit to be measured simultaneously against
polarizers at two different angles. And this is indeed true. But here the same
quantum mechanics provides us with a mechanism that lets us overcome this re-
striction: this mechanism is entanglement, entanglement that makes qubit B an
inverted copy of qubit A. So by performing simultanous measurements on A and
B we can, in effect, measure, say, A against two different angles at the same time.

Let us then substitute a counter-aligned qubit A in place of qubit B:

↗B −→ ↙A

→B −→ ←A
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But if qubit A passes through the ↙ polarizer, it is the same as to say that it
would not pass through the ↗A polarizer, so, in terms of the actual probabilities,
we can write:

p↙A = p¬↗A

where ¬ is a Boolean not4.
Similarly

p←A = p¬→A

In effect, our original expression (5.10) can be rewritten as

p↑A,¬↗A + p↗A,¬→A (5.11)

The first term of (5.11) is the probability that qubit A passes through the ↑
polarizer and at the same time fails to pass through the ↗ polarizer. The second
term is the probability that qubit A passes through the ↗ polarizer and at the
same time fails to pass through the → polarizer.

The following, though as it will turn out incorrect, argument asserts that the
sum of the two probabilities should be no less than the probability that qubit A
passes through the ↑ polarizer and at the same time fails to pass through the →
polarizer, p↑A,¬→A . Why should it be so?

We may conjecture that a qubit that goes through the ↑ polarizer and at the
same time fails to pass through the → one, let us call them qubits of the {↑,¬ →}-
category5, may or may not pass through the ↗ polarizer – if we were to subject it
to such a measurement. Strictly speaking, in order to implement this measurement
we would have to produce a strong entanglement of three qubits, such that they
would be always found in identical (or reversed) states. Anyhow, let us get back to
our duplicated qubit A. The reasoning goes that if the qubit were to pass through
the ↗ polarizer (this would make it of a {↗}-category), it would contribute to the
{↗,¬ →}-category and thus also to p↗A,¬→A , and if it were not to pass through
the ↗ polarizer, it would contribute to the {↑,¬ ↗}-category and thus also to
p↑A,¬↗A .

This is illustrated in figure 5.8.

4Recall that the fiducial vector of probabilities is always normalized so that for the principal
direction, e.g., ↗ we have that p↗A + p↙A = p↗A + p¬↗A = 1.

5We are using here the word “category” in its traditional rather than mathematical sense, i.e.,
a distinct class to which entities belong. It is OK to think of these as sets.
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{↑,¬ ↗} {↗,¬ →}

{↑,¬ ↗,¬ →} {↑,↗,¬ →}

Figure 5.8: A classical look at the Bell inequality. We have three boxes labeled by
the categories, with qubits belonging to one or more. Boxes labeled by {↑,¬ ↗}
and {↗,¬ →} are disjoint . The inner box corresponds to qubits in the {↑,¬ →}-
category. We subdivide it into two disjoint boxes labeled by {↑,¬ ↗,¬ →} and
{↑,↗,¬ →}. Qubits in the left box, labeled by {↑,¬ ↗,¬ →} also belong to the
{↑,¬ ↗} box and qubits in the right box, labeled by {↑,↗,¬ →} also belong to
the {↗,¬ →} box and so we find that the number of qubits N in each category
must satisfy: N↑,¬↗+N↗,¬→ ≥ N↑,¬↗,¬→+N↑,↗,¬→ = N↑,¬→, which translates
into p↑A,¬↗A + p↗A,¬→A ≥ p↑A,¬→A

In summary:
p↑A,¬↗A + p↗A,¬→A ≥ p↑A,¬→A

Now, let us substitute qubit B back in place of qubit A:

p↑A,↗B + p↗A,→B ≥ p↑A,→B (5.12)

But this contradicts equation (5.9) where we have found that

p↑A,↗B + p↗A,→B < p↑A,→B

What is amiss?
Inequality (5.12) is one of the celebrated Bell inequalities. Bell and others, e.g.,

Clauser, Holt, Horne and Shimony [11], and more recently Greenberger, Horne and
Zeilinger [24] [23] and Hardy [25] demonstrated several such inequalities and other
algebraic expressions that purport to flesh out the difference between classical and
quantum physics.
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Let us have a closer look at the reasoning that led us to inequality (5.12). The
way we transformed biqubit probabilities into single-qubit probabilities was actually
quite OK, even though it looked somewhat unnerving. The resulting probabilities
all check out. What does not check out is the statement that

We may conjecture that a qubit that goes through the ↑ polarizer and at
the same time fails to pass through the → one . . . may or may not pass
through the ↗ polarizer . . .. . . . If the qubit were to pass through the
↗ polarizer . . . it would contribute to the {↗,¬ →}-category and thus
also to p↗A,¬→A , and if it were not to pass through the ↗ polarizer, it
would contribute to the {↑,¬ ↗}-category and thus also to p↑A,¬↗A .

What fails in quantum physics is the division of the set of qubits in the {↑,¬ →}-
category into two disjoint groups depending on whether the qubit would or would
not pass through the ↗ polarizer if we were to carry out this additional mea-
surement. This division is hypothetical because we do not actually carry out this
measurement. But if we do not carry out this measurement then the property in
question does not exist and so it cannot be used to split the set.

What does exist is vector r that describes the quantum state of each qubit in the
{↑,¬ →}-category. If this vector points in a direction other than ↗ or ↙, and we
may expect this to be the case for almost every qubit in this category, then there is
a non-zero probability that the qubit will pass through the ↗ polarizer, but there
is also a non-zero probability that it will not. So the same qubit in the {↑,¬ →}-
category may contribute to both the {↑,¬ ↗}-category and to the {↗,¬ →}-
category, which are disjoint, because they are based on the actual measurement.
This has the effect of swelling the volume of the {↑,¬ →}-category with respect
to this hypothetical ↗ measurement, and so in some cases we end up with the
violation of the Bell inequality.

The Bell inequality (5.12) holds for some angles, in particular it holds for θAB of
0◦, 90◦, and 180◦, i.e., the angles we have in our basic fiducial matrix of a biqubit6,
but it does not hold for some other angles, most notably for the combination of
θAB of 45◦ and 90◦.

What is it then that the Bell inequality (5.12) and its violation in quantum
physics illustrated by inequality (5.9) tell us?

6This is why the problem was not noticed in 1935 when Einstein, Podolsky and Rosen first
considered a biqubit measurement of the kind discussed here. It was only in 1964 that Bell
noticed the discrepancy between predictions of quantum mechanics and predictions based on “local
realism” and encapsulated the discrepancy in the form of experimentally testable inequalities.
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They tell us more than one thing, and this is the problem. The discrepancy is the
result of various aspects of quantum physics combining, which leads to confusion.

At first glance we may draw a conclusion that the physical process underlying the
projection of a qubit in some quantum state onto a specific direction of a polarizer
is truly random, i.e., that there cannot be a hidden switch inside the qubit that
determines (with 100% accuracy) how the qubit is going to align. If there was
such a switch inside, then we could base our division of the {↑,¬ →}-category into
the two disjoint {↑,¬ ↗,¬ →} and {↑,↗,¬ →} categories based on the state of
this switch and so the inequality would hold. In quantum mechanics parlance we
say that no deterministic local hidden parameters theory can explain the quantum
mechanical result – the “local hidden parameter” being the switch that sits inside
the qubit.

But this result does not exclude the possiblity of non-deterministic local hidden
parameters and it does not exclude the possiblity of deterministic non-local hidden
parameters either.

We do have a “local hidden parameter” inside a qubit. It is vector r. It is
“hidden”, because we cannot get at it in a single measurement. To evaluate all
three components of r we must explore the whole statistical ensemble of the qubit
with instruments designed to measure them and no instrument can measure all
three at once either. This parameter, however, does not determine how a qubit is
going to behave when measured. It only provides us with probabilities of various
outcomes. So it is not a deterministic parameter.

We also have a deterministic non-local theory, much favoured by Bell [4],
that can be used to reproduce violations of Bell inequalities and other similar
expressions [14], which is due primarily to Erwin Schrödinger (1887-1961),
Louis de Broglie (1982-1987), David Bohm (1917-1992) and Basil Hiley [8].
This theory has some troubling implications and is not well known. Some
physicists may have heard of it, but few studied it in depth. This is a great
pity, because the theory is physically and logically unassailable on account of
being derived entirely and solely from the fundamental equations of quantum
mechanics, so all that quantum mechanics predicts, this theory predicts too.

The theory provides “classical dynamic explanations” for all quantum
phenomena such as spin, probabilities, measurements, collapse of the wave
function, interference fringes, non-locality, etc., and, who knows, . . . it may
even be true, sic! But true or not, it makes good reading and gives one plenty
of food for thought.

The troubling implication of the theory is that on the fundamental level
it treats the whole universe like a single indivisible object: nothing can be
truly isolated from the rest. Such isolation and subsequent identification
of the isolated components as, e.g., “individual electrons”, becomes possible
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in thermodynamic limit only, hence the title of Bohm’s and Hiley’s book
“The Undivided Universe”. The other troubling implication is the violation
of special relativity on the fundamental level, but special relativity is then
recovered on the level of expectation values.

Yet, these are the implications of quantum theory taken to its logical
conclusion, even if somewhat beyond the point where most physicists are
prepared to go – and, needless to say, we have already arrived at quite similar
conclusions when studying the inseparability of a biqubit. These will be
explored further in the next section.

Why this particular picture should be more troubling to the majority

of physicists than, say, multiple universes, for which there is not a shred of

experimental evidence, or geometric dimensions in excess of 3+1, for which

there is not a shred of experimental evidence either, is hard to tell. If, as

Einstein commented, Bohm’s theory (not called “Bohm’s” back then) is too

cheap, the other theories seem far too expensive. At the same time they

all, including Bohm’s, suffer from the same fundamental malady of dragging

macroscopic, classical concept of space-time into their framework.

5.7 Nonlocality

When applied to a biqubit system in the Bell state | Ψ−〉AB the violation of Bell
inequality (5.12) illustrates one more aspect of quantum physics: the non-locality
of a biqubit.

What does it mean?
The quantum mechanical description of a biqubit is extremely primitive. There

is nothing here about the actual physical location of the biqubit components. Sup-
pose, both components are separated by a large macroscopic distance, for example
600 m as has been demonstrated in a fairly recent photon experiment by Aspelmeyer
and his 12 colleagues from Institut für Experimentalphysik, Universität Wien in
Austria [2] – or even a planetary-scale distance as is planned for a forthcoming
satellite-based experiment. Can it really be that qubit B measured characteristics
end up being always opposite of qubit A’s – if, as the Bell inequality tells us, they
are made quite at random at the point of the measurement rather than due to
some “deterministic hidden parameter” inside the qubit? How can qubit B know
instantaneously what state qubit A has been filtered into? Surely, there ought to
be some retardation terms inserted into the probability matrix, to the effect that
qubit B would learn about qubit A’s encounter with the polarization filter after,
say, xAB/c only, where xAB is the distance between the qubits and c is the speed
of light.
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This is exactly the objection that Einstein, Podolsky and Rosen brought up in
1935 [16]. Their conclusion was that since no information could travel faster than
light, there had to be a “deterministic hidden parameter” inside a qubit that would
predetermine the way both qubits would interact with the polarizing filters. The
Bell inequalities and numerous subsequent experiments [18] demonstrated clearly
that there could not be such a “deterministic hidden parameter” inside a qubit. It
is clear that on the most fundamental level quantum mechanics of multiple qubits
contradicts special theory of relativity. This fairly superficial observation is further
confirmed by a more formal proof provided by Hardy [25] and the realization of
Hardy’s gedanken experiment by Irvine, Hodelin, Simon and Bouwmeester [31].

It is well worth having a brief look at how the Bohm’s theory explains what
happens.

In the Bohm’s theory every quantum particle is associated with a field, called
quantum potential , that stretches all the way to infinity and does not diminish with
distance. The field can be derived from the Schrödinger and Dirac equations on
fairly standard substitutions similar to what physicists do within the so called WKB
approximation. But in the Bohm theory we don’t approximate. We calculate things
exactly. Taken to this level, fundamental equations of quantum mechanics can be
interpreted as equations that describe congruences of trajectories as determined
by the quantum potential and various other externally applied fields, e.g., electric,
magnetic, gravitational. The interaction of the particle with the quantum potential
is instantaneous meaning that whatever the field “touches” and however far away,
has an instantaneous effect on the particle.

A measuring apparatus is also a quantum object and so it has a quantum potential
field associated with it too.

A biqubit confronted by two widely spaced polarizers is a system of two qubits and
two polarizers all joined with the fabric of the shared non-local quantum potential.
Whatever happens to qubit A is immediately and instantaneously transmitted to
qubit B and vice versa. But not only this. A configuration of both polarizers is
also transmitted to both qubits, even before they arrive at their respective points
of measurement, and has an effect on how they align.

A heuristic analysis presented in [8] as well as detailed calculations presented by
Durt and Pierseaux [14] show how this mutual and instantaneous coupling of all four
partners results in the violation of Bell inequalities and other similar expressions.

This model is quite telling. It not only points to the instantaneous interaction
between qubits A and B, something that we are forced to expect as soon as we learn
about the entanglement and find about its various experimental demonstrations,
but, just as importantly, it tells us that we must be careful when thinking about
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the act of measurement itself. It is a physical interaction between two or more
physical systems. If all participants to the measurement have non-local feelers, we
have to consider the possibility of a biqubit adjusting itself to a configuration of
the measuring instruments prior to the actual measurement.

The resulting “conspiracy of nature” gives us the quantum reality that puzzles
us so at every step.

It is not necessary to believe in the Bohm’s theory to appreciate various important
and interesting points this model makes, just as it is not necessary to be a Christian
to appreciate the wisdom of Christ’s parables.

How else can we think of an entangled biqubit?
Another approach would be to be more radical about the very notion of space-

time itself. After all space-time is a macroscopic construction that requires macro-
scopic rulers and clocks to define. But we can’t take these into the quantum domain,
so we should not drag the classical fabric of space-time into the quantum domain
either. Yet this is what just about all present-day theories do, perhaps with the
notable exception of Smolin’s “loop quantum gravity” [49] and “spin networks” of
Roger Penrose [43].

How could we replace classical macroscopic space-time in the quantum domain?
For example, we could think of a graph of interactions. Quantum systems, e.g.,
qubits, biqubits, and n-qubits would not be embedded in any space-time. There
would not be any distance between them. Instead they would exchange various
properties with each other. In some cases the exchanges would be intense, in
other cases they would be weak. The exchanges might be ordered too, though not
necessarily strongly. In the thermodynamic limit the graph may turn into space and
time. The weakly or seldom interacting quantum objects might appear as being
far away from each other. The strongly or frequently interacting ones, as being
close. The ordering of the graph may turn into macroscopic time. Projections of
the interactions between quantum systems onto this macroscopic time and space
may acquire some randomness, which is what we, the Creatures of Macroscopia,
see when we look at the quantum world.

Everything in this system would stay together at the most fundamental level,
and this would explain the non-locality of biqubits – their eventual separation into
two independent particles occurring only at the macroscopic level as the result of
interaction with great many other nodes of the graph.

Can it really be that all the universe, all physical reality somehow exists at a
single point and its macroscopically observable spacious and temporal extent is an
illusion built from myriads of interactions within this point?



222 Chapter 5

Why not? Consider photons. In the photon’s system of reference time stops
because of relativistic time dilation. A photon does not experience time. Similarly,
in the photon’s system of reference the whole world is squeezed into a point because
of Lorentz contraction. From the photon’s personal point of view it is everywhere
at the same time. Could it be that the photon is right?

In some sense this picture is not so distant from Bohm’s theory. It is like Bohm’s
theory with the space and time taken out of it, so that its quantum potential can
be non-local.

It is not uncommon in theoretical physics that different conceptual and mathe-
matical frameworks turn out to be equivalent and lead to identical physics.

At the end of the day none of the above may be true. But it is certainly true that
Bell inequalities and quantum physics force us to radically revise our often naive
notions about the nature of reality.

5.8 Single qubit expectation values

Consider a separable biqubit state described by pA ⊗ pB . It is easy to extract just
one of the probabilities from it. We did something similar when defining energy
form for a system of two separate non-interacting qubits in section 5.1, page 181.

The trick is to contract the biqubit with ς1
A,B and make use of 〈ςi, ςj〉 = 2δi

j ,
where i, j = 1, x, y, z. And so:

〈ς1
B ,pA ⊗ pB〉 = pA

〈ς1
A,pA ⊗ pB〉 = pB

We can think of 〈ς1
B ,pA ⊗ pB〉 as an expectation value for the measurement ς1

B

on pA ⊗ pB . Translating this into the language of quaternions, we find:

ρA = ρA2< (1B · ρB) = ρA2<ρB

and now, switching from quaternions to Pauli matrices,

ρA = ρATrBρB

This last expression can be rewritten as

ρA = TrBρAB

where for a separable biqubit ρAB = ρA ⊗ ρB . The symbol TrB means “taking
trace over variables that pertain to qubit B” and is referred to as a partial trace
operation. Physicists also talk about tracing particle B out of the biqubit state.
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It is interesting to trace qubit B out of the Bell state | Ψ−〉AB . Recall that

| Ψ−〉AB ≡ 1
4

(
ς1A ⊗ ς1B − ςxA ⊗ ςxB − ςyA ⊗ ςyB − ςzA ⊗ ςzB

)

Contracting it with ς1
B yields

1
4

(ς1A · 2) =
1
2




1
1
1
1




which implies that rA = 0. This is a completely depolarized state, a total mixture.
Similarly, we’d find that particle B, when looked at separately from particle A

appears completely depolarized. Yet the biqubit itself is thoroughly polarized. It
is in a pure state.

There are several interesting conclusions that can be drawn from this observation.
The first conclusion is that this particular biqubit state, the Bell state | Ψ−〉AB ,

does not provide us with means of transferring useful information from a point
where qubit A is measured to a point where qubit B is measured. At every point
of measurement the measured qubit, be it A or B, appears completely chaotic. It
is only afterwards, when the results of the measurements for qubits A and B are
compared that we get to realize that the two qubits were entangled and in a pure
biqubit state.

The second conclusion is that if we were to associate specific information with
the biqubit, as we associated 0 with |↑〉 and 1 with |↓〉 previously, the information
would be contained in the entanglement , i.e., in the biqubit correlations and not in
the individual qubits of the system.

The third conclusion is that although the unitary formalism does not, at first
glance, let us discuss mixtures and therefore the act of measurement either, here
we have a unitary model that captures a mixed state too. It does it by entangling
a qubit with another qubit. The result of the entanglement is that the state of
each individual qubit becomes mixed. We can therefore generate mixed states of
quantum subsystems within the unitary formalism by viewing them as part of larger
unitary systems. And we can try to model the act of measurement by entangling
the measured quantum object with the measuring apparatus – the quantum state
of the whole being unitary, but the quantum state of the measured object decaying
into a mixture.



224 Chapter 5

We will discuss this in more detail later, but first let us apply the ς1
A,B measure-

ment to the most general biqubit state, which is, as we saw earlier, is

pAB =
1
4

(
ς1A ⊗ ς1B +

∑

i=x,y,z

ri
A ςiA ⊗ ς1B +

∑

i=x,y,z

ri
B ς1A ⊗ ςiB

+
∑

i,j=x,y,z

xij
AB ςiA ⊗ ςjB

)
(5.13)

Contracting this with ς1
B yields

pA = 〈ς1
B ,pAB〉 =

1
2


ς1A +

∑

i=x,y,z

ri
AςiA




and contracting pAB with ς1
A yields

pB = 〈ς1
A,pAB〉 =

1
2


ς1B +

∑

i=x,y,z

ri
BςiB




These two formulas give us a new interpretation of ri
A,B in a biqubit. The biqubit

coefficients ri
A,B encode the results of separate measurements on qubits A and

B. We can read these directly and easily from equation (5.13). Because they
correspond to individual qubits at both ends of a biqubit, they must both lie within
the respective single qubit Bloch balls, i.e., we must have that rA · rA ≤ 1 and
rB ·rB ≤ 1. We have seen previously that these coefficients mix the same way they
do in single qubit systems.

This again confirms that if we focus on one component of a biqubit and ignore the
other one, we have no way of telling whether this qubit is entangled with another
qubit or just mixed for some other reason.

5.9 Classification of biqubit states

A biqubit system appears very simple at first glance. Yet, when investigated in
more depth, it reveals a great deal of complexity. The complexity derives primarily
from the many ways in which biqubits can be mixed: both on the level of individual
qubits, which is described by rA and rB , and on the level of biqubits themselves,
which is captured by xAB . On top of this we have pure states and entangled states,
and the latter can be mixed too.
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Yet, it is still so surprising to learn that most work on biqubit separability and
classification began in the mid-1990s only, some 70 years after the birth of quantum
mechanics and after Pauli’s discovery of his exclusion principle. The reason for this
is that prior to that time, most physicists considered biqubits within the confines of
unitary formalism, and here matters are greatly simplified. It was the new interest
in Bell inequalities and related biqubit probability measurements that made physi-
cists ask whether the correlations they observed were indeed of quantum nature or
merely due to classical mixing. This very fundamental question proved remarkably
difficult to answer.

At the same time, this topic is central to quantum computing, because everything
in quantum computing is done with biqubits. The reason for this is that a biqubit
gate, called the controlled-not gate is universal to quantum computing. And the
other reason is that the moment we enter the domain of experimental quantum
physics we have to abandon the comfortable, but idealistic world of the unitary
formalism and face the reality of fully blown probability theory, or the density
operator theory as the physicists prefer to call it in this context. As working cars
cannot be designed without taking friction into account, similarly, working quantum
computers cannot be designed without taking depolarization, dissipation and other
non-unitary phenomena into account. We saw it very clearly in the quantronium
example.

Let us go back to the biqubit representation given by equation (5.7):

pAB =
1
4

(
ς1A ⊗ ς1B +

∑

j=x,y,z

rj
Bς1A ⊗ ςjB +

∑

i=x,y,z

ri
AςiA ⊗ ς1B

+
∑

i,j=x,y,z

xij
ABςiA ⊗ ςjB

)
(5.14)

where we have normalized the probabilities so that α, the coefficient in front of
ς1A ⊗ ς1B , is 1.

We have seen in section 5.5 how to change the frame in which a biqubit is mea-
sured and what effect this has on equation (5.14). The basic idea there was that
the three Pauli vectors labeled by x, y and z behaved under rotations like normal
3-dimensional vectors that pointed in the x, y and z directions.

Equation (5.14) evaluates probabilities pAB in terms of Pauli vectors attached
at two different locations, the location of qubit A and the location of qubit B.
These two Pauli frames don’t have to be oriented the same way and can be rotated
independently of each other – exactly as we did in section 5.5.
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An arbitrary rotation in the 3D space can be characterized by providing three
Euler angles. The two independent rotations, one for qubit A and the other one
for qubit B, are therefore specified by six Euler angles. We can always choose the
six Euler angles so as to kill the six off-diagonal elements of matrix xij

AB .

Matrix xij
AB does not have to be symmetric for this and we will not end

up with complex numbers on the diagonal either, because here we manipulate

both frames independently. If we wanted to diagonalize matrix xij
AB by per-

forming an identical rotation on both frames, then the matrix would have to

be symmetric for this to work. This is because then we would have only three

Euler angles to play with, and with these we could only kill three off-diagonal

elements.

Having diagonalized matrix xij
AB we end up with only 9 real numbers (that aren’t

zero) in pAB in place of the original 15. And so, it turns out that of the 15 degrees
of freedom that characterize the biqubit in the fiducial formalism, 6 are of purely
geometric character and can be eliminated or otherwise modified by rotating frames
against which the biqubit components are measured. But the remaining 9 degrees
of freedom are physical.

Once we have xij
AB in the diagonal form, we can switch around the labels on the

directions x, y and z so as to rewrite the
∑

ij x
ij
ABςiA ⊗ ςjB term in the following

form:

sign (det xAB)
(
κx

ABςxA ⊗ ςxB + κy
ABςyA ⊗ ςyB + κz

ABςzA ⊗ ςzB

)

where the kappa coefficients are ordered as follows:

κx
AB ≥ κy

AB ≥ κz
AB

The κ coefficients are the same as the xii
AB coefficients after the diagonalization up

to a sign and ordering.
But even now we may have some freedom left. For example, if all κi

AB are zero,
then we can rotate both frames as much as we wish without changing xij

AB or κi
AB

at all. Furthermore, we’re still left with the freedom to reflect rather than rotate
the varsigmas. For example:

ςxA → − ςxA and

ςxB → − ςxB

leaves κx
AB unchanged.
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When such additional freedoms are left after diagonalization of xij
AB we use them

to kill as many remaining ri
A,B as possible, usually starting with ry

A,B , then pro-
ceeding to rz

A,B .
The purpose of all these manipulations is to “normalize” the qubit’s representa-

tion, and remove any dependence on geometry and choices of directions.
The resulting probability matrix is:

pAB =
1
4

(
ς1A ⊗ ς1B +

∑

i=x,y,z

ri
AςiA ⊗ ς1B +

∑

j=x,y,z

rj
Bς1A ⊗ ςjB

+ sign (det xAB)
∑

k=x,y,z

κk
ABςkA ⊗ ςkB

)
(5.15)

It should be remembered that coefficients ri
A and rj

B are no longer the same they
were in the original version of pAB . Rotating Pauli vectors ςiA,B changes not only
xij

AB , but ri
A and rj

B too.
Now, following Englert and Metwally [17], we can divide all possible biqubit

states into classes:

Class A defined by κx
AB = κy

AB = κz
AB = 0. The completely chaotic state with all

coefficients equal zero belongs to this class. Since we end up with xij
AB = 0

for this class we can still rotate both frames, at A and B, and kill ry,z
A,B , which

leaves:
pAB =

1
4

(ς1A ⊗ ς1B + rx
AςxA ⊗ ς1B + rx

Bς1A ⊗ ςxB)




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




=
1
4




1 1 1 + rx
B 1

1 1 1 + rx
B 1

1 + rx
A 1 + rx

A 1 + rx
A + rx

B 1 + rx
A

1 1 1 + rx
B 1




where rx
A ≥ 0 and rx

B ≥ 0 too. This is the most general normalized state in
this class. It is a very strange state with well defined local single qubit states,
but with no biqubit correlations at all, not even classical ones of the form
rx
Ar

x
BςxA ⊗ ςxB .

Class B+ defined by κx
AB = κy

AB = κz
AB = κ > 0 and det xAB > 0.
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Class B− defined by κx
AB = κy

AB = κz
AB = κ > 0 and det xAB < 0.

Here we still have the freedom to kill additionally three ri
A,B . Following an

established convention we choose

pAB =
1
4

(
ς1A ⊗ ς1B

+rx
AςxA ⊗ ς1B

+ς1A ⊗ (rx
BςxB + rz

BςzB)

±κ (
ςxA ⊗ ςxB + ςyA ⊗ ςyB + ςzA ⊗ ςzB

) )




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




=
1
4




1 + rz
B ± κ 1− rz

B ∓ κ 1 + rx
B 1

1 + rz
B ∓ κ 1− rz

B ± κ 1 + rx
B 1

1 + rx
A + rz

B 1 + rx
A − rz

B 1 + rx
A + rx

B ± κ 1 + rx
A

1 + rz
B 1− rz

B 1 + rx
B 1± κ




where rx
A ≥ 0 and when rx

A > 0 then rz
B ≥ 0 and when rx

A = 0 then rx
B ≥ 0

and rz
B = 0.

Two important families of states:

1
4

(
ς1A ⊗ ς1B ± κ

(
ςxA ⊗ ςxB + ςyA ⊗ ςyB + ςzA ⊗ ςzB

))

belong to class B±. They are called Werner states. A B− Werner state with
κ = 1 is the Bell state | Ψ−〉AB .

Class C defined by κx
AB = κ > κy

AB = κz
AB = 0.

Here det xAB = 0, because κy
AB = κz

AB = 0. This leaves us with enough
freedom to clean up ry

A,B too – such is the established choice – so that the
state looks as follows:

pAB =
1
4

(
ς1A ⊗ ς1B

+ (rx
AςxA + rz

AςzA)⊗ ς1B

+ς1A ⊗ (rx
BςxB + rz

BςzB)

±κςxA ⊗ ςxB

)
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p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




=
1
4




1 + rz
A + rz

B 1 + rz
A − rz

B 1 + rx
B + rz

A 1 + rz
A

1− rz
A + rz

B 1− rz
A − rz

B 1 + rx
B − rz

A 1− rz
A

1 + rx
A + rz

B 1 + rx
A − rz

B 1 + rx
A + rx

B ± κ 1 + rx
A

1 + rz
B 1− rz

B 1 + rx
B 1




where rz
A,B ≥ 0 and rx

A ≥ 0 and when rx
A = 0 then rx

B ≥ 0.

A simple separable biqubit state pA⊗pB defined solely by rA and rB belongs
to this class. We can rotate both frames so that rA = rx

AexA and rB = rx
BexB .

Then

pAB =
1
4

(ς1A ⊗ ς1B + rx
AςxA ⊗ ς1B + rx

Bς1A ⊗ ςxB + rx
Ar

x
BςxA ⊗ ςxB)

Class D+ defined by κx
AB > κy

AB = κz
AB = κ > 0 and det xAB > 0.

Class D− defined by κx
AB > κy

AB = κz
AB = κ > 0 and det xAB < 0.

Here we have less freedom left after the diagonalization of xij
AB and the only

ri
A,B that we can to get rid of is ry

A. The resulting state looks as follows:

pAB =
1
4

(
ς1A ⊗ ς1B

+ (rx
AςxA + rz

AςzA)⊗ ς1B

+ς1A ⊗
(
rx
BςxB + ry

BςyB + rz
BςzB

)

± (
κxςxA ⊗ ςxB + κ

(
ςyA ⊗ ςyB + ςzA ⊗ ςzB

)) )




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




=
1
4




1 + rz
A + rz

B ± κ 1 + rz
A − rz

B ∓ κ 1 + rz
A + rx

B 1 + rz
A + ry

B

1− rz
A + rz

B ∓ κ 1− rz
A − rz

B ± κ 1− rz
A + rx

B 1− rz
A + ry

B

1 + rx
A + rz

B 1 + rx
A − rz

B 1 + rx
A + rx

B ± κx 1 + rx
A + ry

B

1 + rz
B 1− rz

B 1 + rx
B 1 + ry

B ± κ
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where rx
A ≥ 0, rz

A ≥ 0 and ry
B ≥ 0. When rx

A = 0 then rx
B ≥ 0. When rz

A = 0
and ry

B = 0 then rz
B ≥ 0.

All pure states belong to class D−. Their generic form is

pAB =
1
4

(
ς1A ⊗ ς1B

+r (ςxA ⊗ ς1B − ς1A ⊗ ςxB)

−
(
ςxA ⊗ ςxB +

√
1− r2 (

ςyA ⊗ ςyB + ςzA ⊗ ςzB

)))

(5.16)

where r ∈ [0, 1].

It is easy to see why this must be the generic form of a pure state. Pure states
are described by 4 complex numbers, or 8 real numbers, constrained by one
normalization condition. This leaves 7 real numbers. But 6 of these can be
eliminated by frame rotations, so that we end up with just one generic param-
eter. This generic parameter is r in the above equation. So the dimensionality
is just right.

The next thing that we have to check is that this is indeed a pure state. We
can do this by demonstrating that its corresponding density quaternion is
idempotent, i.e., that ρρ = ρ.

Let us begin by replacing varsigmas with sigmas:

ρAB =
1

4

 
1A ⊗ 1B

+r (σxA ⊗ 1B − 1A ⊗ σxB)

−σxA ⊗ σxB −
p

1− r2 (σyA ⊗ σyB + σzA ⊗ σzB)

!

(5.17)

Let us organize the computation by introducing

a = (σxA ⊗ 1B − 1A ⊗ σxB)

b = σxA ⊗ σxB

c = (σyA ⊗ σyB + σzA ⊗ σzB)

then

ρAB · ρAB =
1

16

“
1A ⊗ 1B + ra− b−

p
1− r2c

”
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×
“
1A ⊗ 1B + ra− b−

p
1− r2c

”

=
1

16

“
1A ⊗ 1B + 2ra− 2b− 2

p
1− r2c

+r2a2 + b2 + (1− r2)c2

−r(ab + ba)

−r
p

1− r2(ac + ca)

+
p

1− r2(bc + cb)
”

The trick is now to remember that A sigmas must multiply other A
sigmas only and the same holds for B sigmas.

It is very easy to see that

b2 = σxA ⊗ σxB · σxA ⊗ σxB = 1A ⊗ 1B

This is because σiA,BσiA,B = 1A,B , for i = x, y, z.
It is almost as easy to see that

c2 = 2 (1A ⊗ 1B − σxA ⊗ σxB) = 2 (1A ⊗ 1B − b)

This is, first, because of the above, and second, because

σyA ⊗ σyB · σzA ⊗ σzB = σzA ⊗ σzB · σyA ⊗ σyB = −σxA ⊗ σxB

The minus here comes from i2.
And it is childishly easy to see that

a2 = c2 = 2 (1A ⊗ 1B − b)

too. This is because

1A ⊗ σxB · 1A ⊗ σxB = 1A ⊗ 1B

and because

1A ⊗ σxB · σxA ⊗ 1B = σxA ⊗ σxB = b

Let us then add

r2a2 + b2 + (1− r2)c2

= r22 (1A ⊗ 1B − b) + 1A ⊗ 1B + (1− r2)2 (1A ⊗ 1B − b)

= 31A ⊗ 1B − 2b

and so

1A ⊗ 1B + 2ra− 2b− 2
p

1− r2c + r2a2 + b2 + (1− r2)c2

= 41A ⊗ 1B + 2ra− 4b− 2
p

1− r2c
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For perfect happiness we still have to generate additional 2ra and
additional−2

√
1− r2c using the remaining three anti-commutator terms.

It is quite trivial to see that

bc = cb = −c

This is because
σxσy = −σyσx = iσz

and
σxσz = −σzσx = −iσy

So bc is merely going to swap σyA ⊗ σyB and σzA ⊗ σzB and throw
i2 = (−i)2 = −1 in front. Consequently

bc + cb = −2c

Similarly
ab = ba = −a

This is because

σxA ⊗ 1B · σxA ⊗ σxB = 1A ⊗ σxB

Consequently
ab + ba = −2a

and
−r(ab + ba) +

p
1− r2(bc + cb) = 2ra− 2

p
1− r2c

Adding this to

41A ⊗ 1B + 2ra− 4b− 2
p

1− r2c

yields

41A ⊗ 1B + 4ra− 4b− 4
p

1− r2c

which when divided by 16 returns the original ρAB .
We are left with one more term, namely,

r
p

1− r2(ac + ca)

and this term vanishes, because here we have just one σxA,B from a
multiplying one of the σy,zA,B from c, first from the left, in ac, and then
from the right, in ca. But different sigmas anti-commute, so this kills the
whole term.

This computation, although somewhat tedious, is also instructive.
Apart from demonstrating that the quaternion of state (5.17) is idempo-
tent and so the state itself is pure, the example also shows how to divide
a lengthy computation of this nature into smaller, manageable chunks,
and how to perform the computation itself by using quaternion rules only
and not Pauli matrices.
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Class E+ defined by κ = κx
AB = κy

AB > κz
AB and det xAB > 0.

Class E− defined by κ = κx
AB = κy

AB > κz
AB and det xAB < 0.

These two classes are very similar to D±. The difference is that whereas
previously we had κ = κy = κz, here we have that κ = κx = κy instead and
κz is different.

This, as before, lets us kill ry
A only and so we end up with

pAB =
1
4

(
ς1A ⊗ ς1B

+ (rx
AςxA + rz

AςzA)⊗ ς1B

+ς1A ⊗
(
rx
BςxB + ry

BςyB + rz
BςzB

)

± (
κ

(
ςxA ⊗ ςxB + ςyA ⊗ ςyB

)
+ κzςzA ⊗ ςzB

) )




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




=
1
4




1 + rz
A + rz

B ± κz 1 + rz
A − rz

B ∓ κz 1 + rz
A + rx

B 1 + rz
A + ry

B

1− rz
A + rz

B ∓ κz 1− rz
A − rz

B ± κz 1− rz
A + rx

B 1− rz
A + ry

B

1 + rx
A + rz

B 1 + rx
A − rz

B 1 + rx
A + rx

B ± κ 1 + rx
A + ry

B

1 + rz
B 1− rz

B 1 + rx
B 1 + ry

B ± κ




where rx
A ≥ 0 and ry

B ≥ 0 and when rx
A = 0 then ry

B = 0 too and rx
B ≥ 0.

Additionally rz
A ≥ 0 too and when rz

A = 0 then rz
B ≥ 0.

Class F+ defined by κx
AB > κy

AB > κz
AB and det xAB > 0.

Class F− defined by κx
AB > κy

AB > κz
AB and det xAB < 0.

With all three kappas different we get no freedom to kill any r-s. We can
deploy reflections in order to make as many of rx

A, rx
B , ry

A, ry
B , rz

A and rz
B as

possible positive – in preference of the order listed.

The resulting probability matrix is

pAB =
1
4

(
ς1A ⊗ ς1B

+
(
rx
AςxA + ry

AςyA + rz
AςzA

)⊗ ς1B



234 Chapter 5

+ς1A ⊗
(
rx
BςxB + ry

BςyB + rz
BςzB

)

± (
κxςxA ⊗ ςxB + κyςyA ⊗ ςyB + κzςzA ⊗ ςzB

))




p↑↑ p↑↓ p↑→ p↑⊗

p↓↑ p↓↓ p↓→ p↓⊗

p→↑ p→↓ p→→ p→⊗

p⊗↑ p⊗↓ p⊗→ p⊗⊗




=
1
4




1 + rz
A + rz

B ± κz 1 + rz
A − rz

B ∓ κz 1 + rz
A + rx

B 1 + rz
A + ry

B

1− rz
A + rz

B ∓ κz 1− rz
A − rz

B ± κz 1− rz
A + rx

B 1− rz
A + ry

B

1 + rx
A + rz

B 1 + rx
A − rz

B 1 + rx
A + rx

B ± κx 1 + rx
A + ry

B

1 + ry
A + rz

B 1 + ry
A − rz

B 1 + ry
A + rx

B 1 + ry
A + ry

B ± κy




Classes A through F are subdivided into families that are defined by the values of
the parameters that characterize each class. Unitary transformations do not take
a member of a family outside the family. In other words, the families are unitary
invariants.

The classification presented in this section is somewhat superficial. It is based on
how the state looks when expressed in terms of Pauli vectors (or Pauli quaternions,
or Pauli matrices – the look and classification are the same). This should be
considered only as the first step in understanding biqubit states in general.

At first glance we still cannot tell whether a given biqubit state is entangled or
just a fanciful mixture that looks similar to an entangled state, but isn’t.

5.10 Separability

The Englert and Metwally classification of biqubit states presented in the previous
section must be supplemented with two additional conditions. The first one is
obvious: every term of matrix pAB must be restricted to [0 . . . 1], because every
term of the matrix is a probability. This imposes restrictions on the κ coefficients,
together with more obvious restrictions on the rA,B vectors deriving from their
interepretation discovered in section 5.8, “Single qubit expectation values”, page
222.

The second condition is less obvious: it may happen that a state described by
pAB looks perfectly OK at first glance, but is, in fact, unphysical.

An example of such a state is a Werner state of class B+ with κ = 1, i.e.,

p+
AB =

1
4

(
ς1A ⊗ ς1B + ςxA ⊗ ςxB + ςyA ⊗ ςyB + ςzA ⊗ ςzB

)
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its explicit probability matrix is

1
4




2 0 1 1
0 2 1 1
1 1 2 1
1 1 1 2




This matrix looks perfectly acceptable: all terms are within [0 . . . 1]. But its physics
looks very suspicious. What we have here is a system of two 1/2-spins that align in
every direction, i.e., if we measure both spins against ez, they come out aligned. If
we measure them against −ez, they come out aligned too. And this is also the case
for every other direction. So this is a system of spin 1 that is spherically symmetric.
But a spherically symmetric system cannot have spin 1. Only a system of spin 0
may be spherically symmetric.

A reader who took section 2.1, “The ugly quanta”, page 41, to heart may

object here and say that we should not be hasty in declaring what is and what

is not physical ex cathedra. That this should be decided by an experiment

rather than aesthetic or even mathematical considerations. Even the most

beautiful and convincing mathematics is useless if it is derived from incorrect

assumptions. Well, we can say with certainty that such a state has never been

observed.

If the argument about the symmetry of this state not being physical is not con-
vincing enough, here we have another argument. The probability of a transition
between this state and Bell state | Ψ−〉AB is . . . negative.

The Bell state | Ψ−〉AB is a perfectly legitimate, pure and experimentally ob-
served state that defines a certain direction in the biqubit Hilbert space. Its corre-
sponding projection operator is | Ψ−〉AB⊗AB〈Ψ− | and it corresponds physically to
a state with spin 0. It would be perfectly OK for state p+

AB to have zero probability
of transition to the Bell state, but a negative probability is clearly unphysical.

Transition probability to the Bell state can be evaluated similarly to the way we
did it for single-qubit states in section 4.4, “Probability amplitudes”, page 126. We
simply need to evaluate the following bracket, 〈p̃−AB ,p

+
AB〉:

〈p̃−AB ,p
+
AB〉

=
〈1

4
(
ς1

A ⊗ ς1
B − ςx

A ⊗ ςx
B − ςy

A ⊗ ςy
B − ςz

A ⊗ ςz
B

)
,

1
4

(
ς1A ⊗ ς1B + ςxA ⊗ ςxB + ςyA ⊗ ςyB + ςzA ⊗ ςzB

) 〉
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=
1
16

(
〈ς1

A, ς1A〉〈ς1
B , ς1B〉 − 〈ςx

A, ςxA〉〈ςx
B , ςxB〉

−〈ςy
A, ςyA〉〈ςy

B , ςyB〉 − 〈ςz
A, ςzA〉〈ςz

B , ςzB〉
)

=
1
16

(2× 2− 2× 2− 2× 2− 2× 2)

= −1
2

Observe that p+
AB can be obtained from p−AB by replacing, for example,

ςxA → −ςxA

ςyA → −ςyA

ςzA → −ςzA (5.18)

while leaving all ςiB , i = x, y, z intact, or the other way round, but not both.
Such an operation would not produce a weird unphysical state if performed on a

simple separable biqubit state

1
2


ς1A +

∑

i=x,y,z

ri
AςiA


⊗ 1

2


ς1B +

∑

i=x,y,z

ri
BςiB




because it would be equivalent to replacing rA with −rA, and this would still be
a perfectly normal, physical state made of qubit B in the same state as before
and qubit A pointing in the opposite direction to the one that qubit A pointed to
originally.

It would not produce a weird unphysical state if performed on a general separable
biqubit state, i.e. a state that is a finite mixture of simple separable states for the
same reason. It would be equivalent to replacing rAi with −rAi for every mixture
component labeled by i.

Yet, when applied to an entangled state it produces an unphysical state.
It turns out [46] [29] [17] that this is a common feature of all biqubit entangled

states. This amazing property was discovered by the family of Horodeckis from the
University of Gdańsk in Poland and by Asher Peres from Technion in Haifa.

Why is it so? The reason for this is that an entangled biqubit can be thought
of as a “new compound particle in the making”, or an “old compound particle in
the breaking”. The latter is a more common experimental situation. Note that the
making of a compound particle is the same as the breaking of a compound particle
viewed backwards in time.
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When a compound particle breaks the spins of the constituents must be aligned
just so, in order to conserve various quantum numbers, of which angular momentum
is one, and to which spin contributes. If one of the constituents gets switched the
other way, artificially, the rules break real bad – producing, e.g., a spin-1 system
that is spherically symmetric – and we end up with an unphysical configuration.

But for a biqubit that is separable, the same does not hold. Here there is no need
to adhere to various conservation principles and such. The two constituents of the
biqubit are fully independent and may point whichever way they wish.

Whereas the Peres-Horodeckis criterion of separability is simple and elegant, it
is not all this easy to check whether a given state produced by operation (5.18) is
physical or not. But we can use the bridges that lead from fiducial vectors to Pauli
matrices to help ourselves in this task somewhat.

The bridge works as follows.
Let us go back to a simple separable biqubit described by

pAB = pA ⊗ pB

Consider a simple energy form

ηAB = ηA ⊗ ς1
B + ς1

A ⊗ ηB

The expectation value of energy on pAB is

〈ηAB ,pAB〉
= 〈ηA,pA〉〈ς1

B ,pB〉+ 〈ς1
A,pA〉〈ηB ,pB〉

= −µA ·BA − µB ·BB

where BA and BB correspond to B in locations A and B respectively. Recall that
〈ς1,p〉 is 1, because there is a 1/2 in front of ς1 inside p.

Let us now switch to the quaternion image of the same. Here we have that

ρAB = ρA ⊗ ρB

and
HAB = HA ⊗ 1B + 1A ⊗HB

Multiplying HAB by ρAB yields

HABρAB

= (HA ⊗ 1B + 1A ⊗HB) · (ρA ⊗ ρB)

= (HAρA)⊗ (1BρB) + (1AρA)⊗ (HBρB)
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Since 1ρ = ρ we can simplify this to

HABρAB = (HAρA)⊗ ρB + ρA ⊗ (HBρB)

Now recall that

Hρ

= −µ
2

(B · r) 1 + terms multiplied by sigmas

=
1
2
〈E〉1 + terms multiplied by sigmas

so

HABρAB

=
(

1
2
〈EA〉1A + . . .

)
⊗ ρB + ρA ⊗

(
1
2
〈EB〉1B + . . .

)

=
(

1
2
〈EA〉1A + . . .

)
⊗

(
1
2
1B + . . .

)
+

(
1
2
1A + . . .

)
⊗

(
1
2
〈EB〉1B + . . .

)

=
1
4

(〈EA〉+ 〈EB〉) 1A ⊗ 1B + . . .

where “. . .” is a shortcut for terms that have some sigmas in them, be it one or
two. So clearly, extracting what stands in front of 1A ⊗ 1B and multiplying it by
4 this time yields the right answer.

This is therefore the operation that we need here:

〈EAB〉 = 4<A<B (HABρAB) (5.19)

Going now one step further and thinking of sigmas as matrices rather than quater-
nion units, we replace each 2< with its own trace operation, which yields:

〈EAB〉 = TrATrB (HABρAB) (5.20)

Various operations on tensor products of two qubits can be rewritten in the form
of simple matrix and vector calculus, for example a tensor product of two 2 × 2
matrices can be represented by a single 4× 4 matrix. This is how it works.

Consider a tensor product of two unitary vectors in a 2 dimensional Hilbert space,
e.g., | u〉⊗ | v〉. Let

| u〉 = u0 | 0〉+ u1 | 1〉
and

| v〉 = v0 | 0〉+ v1 | 1〉
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then

| u〉⊗ | v〉 = (u0 | 0〉+ u1 | 1〉)⊗ (v0 | 0〉+ v1 | 1〉)
= u0v0 | 0〉⊗ | 0〉+ u0v1 | 0〉⊗ | 1〉+ u1v0 | 1〉⊗ | 0〉+ u1v1 | 1〉⊗ | 1〉
= u0v0 | 00〉+ u0v1 | 01〉+ u1v0 | 10〉+ u1v1 | 11〉

where we have used a shorthand | 00〉 for | 0〉⊗ | 0〉 and for other combinations of
the basis vectors.

But we can always re-interpret binary sequences as decimal numbers, namely:

00 ≡ 0

01 ≡ 1

10 ≡ 2

11 ≡ 3

So we can rewrite our tensor product of | u〉⊗ | v〉 as

u0v0 | 0〉+ u0v1 | 1〉+ u1v0 | 2〉+ u1v1 | 3〉

where

| 0〉 ≡ | 0〉⊗ | 0〉
| 1〉 ≡ | 0〉⊗ | 1〉
| 2〉 ≡ | 1〉⊗ | 0〉
| 3〉 ≡ | 1〉⊗ | 1〉

or we can also represent it in terms of a “column vector”:

| u〉⊗ | v〉 ≡




x0

x1

x2

x3


 =




u0v0
u0v1
u1v0
u1v1




This can be also obtained by the following operation



u0

(
v0
v1

)

u1

(
v0
v1

)
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Observe the difference between the tensor product and the so called direct
sum of two vectors, which would be:

| u〉⊕ | v〉 ≡

0
BB@

u0

u1

v0

v1

1
CCA

Occasionally people ask the question, “why a quantum mechanical system

of two qubits is described by the tensor (direct) product and not by the

direct sum of two qubits?” In classical mechanics, for example, a system of

two material points is described by the direct sum of the particles’ guiding

vectors. The reason for this is that quantum mechanics is a probability theory

and a probability of some combined outcome in a multicomponent system is

a product of probabilities of outcomes pertaining to each component.

Now let us consider a tensor product of two 2×2 matrices. These are representations
of operators acting on unitary vectors in the 2-dimensional Hilbert space, namely:

(
a00 a01

a10 a11

)
≡ | 0〉a00〈0 | + | 0〉a01〈1 | + | 1〉a10〈0 | + | 1〉a11〈1 |= a

Let b be a similar matrix/operator. Then

a⊗ b = (| 0〉a00〈0 | + | 0〉a01〈1 | + | 1〉a10〈0 | + | 1〉a11〈1 |)
⊗ (| 0〉b00〈0 | + | 0〉b01〈1 | + | 1〉b10〈0 | + | 1〉b11〈1 |)

= | 00〉a00b00〈00 | + | 00〉a00b01〈01 | + | 01〉a00b10〈00 | + | 01〉a00b11〈01 |
+ | 00〉a01b00〈10 | + | 00〉a01b01〈11 | + | 01〉a01b10〈10 | + | 01〉a01b11〈11 |
+ | 10〉a10b00〈00 | + | 10〉a10b01〈01 | + | 11〉a10b10〈00 | + | 11〉a10b11〈01 |
+ | 10〉a11b00〈10 | + | 10〉a11b01〈11 | + | 11〉a11b10〈10 | + | 11〉a11b11〈11 |

= | 0〉a00b00〈0 | + | 0〉a00b01〈1 | + | 1〉a00b10〈0 | + | 1〉a00b11〈1 |
+ | 0〉a01b00〈2 | + | 0〉a01b01〈3 | + | 1〉a01b10〈2 | + | 1〉a01b11〈3 |
+ | 2〉a10b00〈0 | + | 2〉a10b01〈1 | + | 3〉a10b10〈0 | + | 3〉a10b11〈1 |
+ | 2〉a11b00〈2 | + | 2〉a11b01〈3 | + | 3〉a11b10〈2 | + | 3〉a11b11〈3 |

≡




a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11
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This matrix can be also obtained by the following operation:



a00

(
b00 b01
b10 b11

)
a01

(
b00 b01
b10 b11

)

a10

(
b00 b01
b10 b11

)
a11

(
b00 b01
b10 b11

)




Now, observe that

TraTrb a⊗ b

= Traa · Trbb = (a00 + a11) · (b00 + b11)

= a00b00 + a00b11 + a11b00 + a11b11

is the same as a single trace of the large 4× 4 matrix.
Matrix multiplication of the 4 × 4 matrix by the 4-slot vector yields another 4-

slot vector, which, when contracted with a 4-slot form produces a number that is
the same as would be obtained from, say, operation such as 〈ΨAB | ρAB | ΨAB〉.
So instead of working with explicit tensor products of 2 × 2 Pauli matrices we
can switch to these 4 × 4 matrices instead and instead of calculating double trace
operations such as TrATrB we can calculate single traces of the corresponding 4×4
matrices.

If the 4 × 4 matrix in question is made of the density quaternion ρAB , then
it must satisfy the same requirements that we discovered for single qubit density
operators, namely:

1. It must be Hermitian.

2. Its trace must be 1.

3. It must be positive.

4. It must be idempotent if it describes a pure state.

Returning to the Peres-Horodeckis criterion for biqubit separability, we can fairly
easily check that a given 4 × 4 density matrix of some biqubit state is not posi-
tive by calculating its determinant. If the determinant is negative it means that
either one or three eigenvalues of the matrix are negative, which implies that on
the corresponding eigenvectors the expectation values of ρAB are negative too,
which, in turn, implies that the state described by ρAB is unphysical, because
these expectation values are supposed to be transition probabilities.

It may happen that the 4 × 4 density matrix has either 2 or 4 negative eigen-
values, in which case its determinant is still positive. But the case with 4 negative
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eigenvalues being negative can be easily eliminated, because in this case the trace
would be negative too.

The case with 2 negative eigenvalues is harder. Here we may have to look at
other matrix invariants or simply find all eigenvalues explicitly.

Let us see how this works in practice.
Appendix C lists 4 × 4 matrices that represent some tensor products of Pauli

matrices. Let us rewrite the density operator of Bell state | Ψ−〉 in the 4× 4 form.

ρ− =
1
4

(1⊗ 1− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz)

Making use of equations (C.1), (C.2), (C.3) and (C.4) on pages 287 and 288 results
in

ρ− =
1
4

(



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




−




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


−




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




)

=
1
4




0 0 0 0
0 2 −2 0
0 −2 2 0
0 0 0 0




The determinant of this matrix is zero, but it is easy to see that three eigenvalues
of this matrix are zero and the remaining one is +1. So this matrix makes a viable
representation of a density operator. On no biqubit projector state P do we find
that Tr (Pρ−) < 0.

But now let us have a look at the Werner “state”

ρ+ =
1
4

(1⊗ 1 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz)

This time the corresponding 4× 4 matrix is

ρ+ =
1
4

(



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 +




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
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+




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 +




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




)

=
1
4




2 0 0 0
0 0 2 0
0 2 0 0
0 0 0 2




The determinant of the
1
4




0 2 0
2 0 0
0 0 2




sub-matrix is −1/8. The algebraic complement of the 1/2 in the upper left corner
of the 4 × 4 matrix is therefore (−1)1+1(−1/8) = −1/8 and so, using the Laplace
expansion formula the determinant of the 4× 4 matrix is

1
2
·
(
−1

8

)
= − 1

16

It is negative, which implies that either one or three eigenvalues of the 4×4 matrix
are negative. Therefore the matrix does not qualify as a plausible density operator
representation, because a biqubit projector state P exists such that

Tr
(
Pρ+

)
< 0

It is enlightening to review the mathematical reasoning that lead the fam-
ily of Horodeckis to conclude that the operation described in this section, i.e.,
switching the sign in front of sigmas (or varsigmas) that refer to one of the two
qubits, but not both, and then checking if the resulting new state is physical,
yields a necessary and sufficient condition for separability of the original state
[29].

First, let us recapitulate some basic terminology. A state ρAB is called
separable if it can be represented by a finite mixture of simple separable
states, i.e., if

ρAB =

kX
i=1

pi
ABρiA ⊗ ρiB

A state ρAB is physical if for any biqubit projector P AB = | ΨAB〉 ⊗ 〈ΨAB |
Tr (P ABρAB) ≥ 0

The density operator ρAB that satisfies this condition is also called positive
– in this case this is a mathematical way of saying that it is physical .
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Linear operators that act on the qubit Hilbert space themselves form a
Hilbert space of their own in which a scalar product

〈A, B〉 = Tr
“
B†A

”

can be defined, where the † operation indicates Hermitian conjugation, i.e., a
matrix transposition combined with complex conjugation of the matrix terms
(it does not affect any of the Pauli matrices, which are all Hermitian).

Qubit operators may be transformed into one another by the action of lin-
ear maps. The maps are said to be positive if they convert positive operators
into some other positive operators. Maps are said to be completely positive if
their tensor product with the identity is a positive map in the larger biqubit
operator space. For example, if ΛA is a map, then it is said to be completely
positive if

ΛA ⊗ 1B

is positive on the space of biqubit operators.
The reasoning now runs as follows. First we observe that ρAB must be

separable if and only if
Tr (HABρAB) ≥ 0 (5.21)

for any Hermitian operator HAB such that

Tr (HABP A ⊗ P B) ≥ 0

where P A and P B are arbitrary projectors in the space of qubits A and B
respectively.

This observation seems quite obvious, at least in one direction, but there
is actually a fairly simple proof that derives from certain general properties
of convex spaces equipped in a scalar product, and a space of separable states
has these two properties, that demonstrates the veracity of the statement in
both directions, i.e., if and only if too.

A theorem proven by JamioÃlkowski in 1972 is now invoked that translates
the condition Tr (HABρAB) ≥ 0 into the language of positive maps with a
quite specific expression in place of HAB , namely:

Tr (P AB (1A ⊗ΛBρAB)) ≥ 0

where P AB is a one-dimensional Hermitian projector in the biqubit space and
ΛB is an arbitrary positive map in the space of qubit B. The projector can
be dropped from this condition, because it does not affect the positivity of
1A⊗ΛBρAB and so we end up with the following theorem: ρAB is separable
if and only if 1A ⊗ΛBρAB is positive for any positive map ΛB.

At this stage a theorem by Strømer and Woronowicz is invoked that says
that any positive map ΛB in two and three dimensional Hilbert spaces is of
the form

ΛB = XB + Y BT B
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where XB and Y B are completely positive maps and T B is a matrix trans-
position in the space of qubit B. So

1A ⊗ΛB = 1A ⊗ (XB + Y BT B)

= 1A ⊗XB + 1A ⊗ Y BT B

Because XB and Y B are completely positive their tensor products with 1A

are positive maps that do not change positivity of ρAB . But 1A ⊗ T B is the
only term above that may change the positivity of ρAB , and so we are left
with the following criterion that has been literally distilled from the origi-
nal formulation with HAB : ρAB is separable if and only if 1A ⊗ T BρAB is
positive.

The partial transposition operation 1A⊗T B (it is called “partial” because
it only affects one of the two qubits) does not affect 1B , σxB and σzB , but
it affects σyB , because this Pauli matrix is antisymmetric:

σT
y =

„
0 −i
i 0

«T

=

„
0 i
−i 0

«
= −σy

Indeed, instead of replacing all three sigmas (or varsigmas) for particle A
(or B, but not both) with minus sigmas (or minus varsigmas), we could have
just replaced σy with −σy and already this would have converted the Bell
state p−AB into an unphysical state. But why should the y direction be the
only one blessed so? After all it is up to us to define which direction in space
happens to be y.

The physical equivalent of the partial transpose operation is to reverse the
polarity of one of the qubits that make a biqubit completely (all three sigmas
are reversed), or to reflect its state in a mirror that is placed in the ex × ez

plane (only σy is reversed.)
The partial transpose condition works only for 2 and 3 dimensional Hilbert

spaces. For higher dimensional spaces the condition Tr (1A ⊗ T BρAB) ≥ 0 is
a necessary condition for ρAB to be separable, but not a sufficient one.

In summary, the Horodeckis’ proof tells us that the partial transpose
criterion works because it is a thorough distillation (i.e., all that’s left after
various irrelevant stuff is removed) of the more obvious, but much harder to
apply, criterion (5.21).

The Horodeckis theorem and its physical interpretation tell us something very
interesting about entangled states. They are qualitatively different from separable
states and, as the result, they are very difficult to concoct. It is not enough to just
bring two qubits together. All we’ll end up with will be a separable state of two
qubits or a mixture of such states. To produce an entangled state we usually have
to do something very special, e.g., we have to split a composite particle, or we have
to make an atom emit a photon. Then, only, as we saw in section 5.4, we’re going
to get an entangled state.
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5.11 Impure quantum mechanics

Traditional unitary quantum mechanics is like Newtonian mechanics without fric-
tion. It is a highly idealized picture that . . . while capturing great many phenomena
very well does not entirely correspond to the real world.

In section 2.11 (pages 83 to 87), figure 2.9, page 88, we saw a vivid demonstration
of the problem. There we saw that the amplitude of the observed Rabi oscillations
diminished exponentially on the time scale of about a microsecond. The quantron-
ium qubit that started in a fully polarized state, gradually lost its polarization. Our
model that derived from the Schrödinger equation (via the von Neumann equation
projected so as to yield evolution of qubit probabilities) could not account for this
phenomenon. The r ×B term ensured that only the direction and not the length
of the polarization vector r would change.

Then we revisited the issue again in section 4.8.1 where we discussed a general
solution to the Schrödinger equation and discovered that the equation preserved
the unitarity of states being evolved, see equation (4.47) page 150.

For great many years physicists were baffled by this conundrum. How could it
be that quantum physics, which explained so many phenomena so well, could not
account for depolarization, dephasing, decoherence, and. . . ultimately the very act
of measurement, the act that is at the very foundation of the unitary formalism. Yet,
the Schrödinger equation, with its many variants (Pauli, Dirac), a rich assortment
of Hamiltonians, and added complexities of quantum field theories and statistical
physics, was the only fundamental quantum equation known to work. It was also, as
we have observed in section 4.8, the simplest possible equation to evolve a quantum
state.

Eventually the solution derived from the observation we made in section 5.8,
“Single qubit expectation values”. There we noticed that a pure biqubit maximally
entangled state might look like two qubits both in completely chaotic mixed states,
when the constituent qubits were measured separately, and the purity of the biqubit
state asserted itself as correlations between the otherwise random outcomes of
measurements made on the constituent qubits.

It turns out that, mathematically, every mixed quantum state can be embedded in
a larger system, such that the larger system is unitary and its internal entanglement
results in the observed mixed state of the embedded component. The mathematical
procedure of finding such an embedding is called purification. So, we can state that
every impure quantum state can be purified .

This statement can be demonstrated easily for a single qubit. Recall
equation (5.16) in section 5.9 that represented every possible pure biqubit
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state in the following form of the D− class:

pAB =
1

4

 
ς1A ⊗ ς1B

+r (ςxA ⊗ ς1B − ς1A ⊗ ςxB)

−
“
ςxA ⊗ ςxB +

p
1− r2

`
ςyA
⊗ ςyB

+ ςzA ⊗ ςzB

´”
!

(5.22)

As we discovered in section 5.8 the way to eliminate the other qubit from a
biqubit is to contract the whole biqubit with the other qubit’s ς1.

Let us extract qubit A from pAB given by (5.22):

pA = 〈ς1
B , pAB〉

=
1

4
(2ς1A + 2rςxA) =

1

2
(ς1A + rςxA)

Similarly

pB = 〈ς1
A, pAB〉 =

1

2
(ς1B − rςxB)

They are both mixed-state qubits one pointing in the exA direction and the
other one pointing in the −exB direction. But let us recall that we have
obtained equation (5.22) by rotating the varsigmas pertaining to each qubit
independently so as to eliminate as many terms from pAB as possible. So, exA

and −exB do not have to point in the same direction. Hence, any two qubits
in mixed states and of the same polarization value r, pointing in arbitrary
directions can be made to look like they are constituents of a pure biqubit
state, if we remember to add the third term in equation (5.22), the one that
describes the correlation between the qubits.

This is an algebraic, not a physical procedure. We cannot just take any
two physical qubits and produce this third term,

ςxA ⊗ ςxB +
p

1− r2
`
ςyA
⊗ ςyB

+ ςzA ⊗ ςzB

´
,

by some fancy laboratory manipulations. All that the purification theorem
says is that a qubit in a mixed state can be always thought of as an entangled
member of some larger system that is pure.

This is not to say that entangled qubits cannot be engineered. They

can, but it is very difficult to do so, and even more difficult to control their

entanglement for a time sufficient to carry out some meaningful computations.

Clearly, purification is not unique. The same mixed state can be made a part of
various larger systems, in each case contributing to some pure state of the whole.
In case of the biqubit state discussed above, we can purify qubit A by coupling
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it to any of the possible qubits B pointing in various directions, as long as their
polarization value r is the same as that of A. We can also purify qubit A by coupling
it to larger systems, e.g., to biqubits, or tri-qubits, or to n-qubits.

So here is an idea. Why don’t we treat any mixed state as arising from en-
tanglement with other quantum systems? We can then use the unitary formalism
and the Schrödinger equation to describe the evolution of the larger pure system
of which the component in a mixed state is a sub-system, then we kill all the other
components of the larger pure system with ς1s, or, in the parlance of the density
matrix theory, we trace them away , and what’s left is the quantum evolution of a
quantum system in a mixed state.

This may work with one snag. The evolution produced thusly will usually differ
in details depending on the type of the bath our mixed state subsystem has been
embedded in. Needless to say, a large industry exists already busying itself with such
exercises. On the other hand, many common features transpire from these exercises
that. . . seem to match quite well the observed quantum dissipative phenomena, of
which qubit depolarization is but one.

By enclosing boxes within larger boxes we are led to believe that everything can
be explained by the unitary formalism, until we try to embed the universe as a
whole in order to explain why it is in a mixed state. We arrive at a surprising
conclusion here that the universe must be in a pure state, because there is nothing
out there to entangle it with, unless we invoke a multitude of other universes with
which ours may be entangled, or some other multi-dimensional realms within which
our universe may be only a thin membrane. This is very entertaining stuff, and it’s
fine as extrapolation and expolaration of ideas, but it is not exactly natural science,
unless some experimental evidence is produced in support of such concepts.

Still, for a less ambitious task of modeling a depolarizing qubit, the program
discussed here is workable and we’re going to have a closer look at some simple and
fundamental results in the following sections.

5.11.1 Nonunitary Evolution

Consider a system of two qubits, of which one is going to stand for an “environ-
ment” and the other will be subject to some evolution and observation. This is
a very simplistic unitary model of a qubit interaction with its environment but
it is sufficient to demonstrate a number of important non-unitary features that a
quantum system entangled with its environment may display.

Let the density operator of the “environment” qubit at t = 0 be ρE(0) and the
density operator of the qubit we want to measure independently of the environment
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qubit be ρA(0) at t = 0. Both ρE(0) and ρA(0) are pure states, and the initial
combined state is simple and separable (cf. page 191):

ρAE(0) = ρA(0)⊗ ρE(0)

Suppose the biqubit is fully isolated and that its evolution is unitary, as given by
equation (4.49), page 151:

ρAE(t) = UAE(t)ρAE(0)U †AE(t) = UAE(t) (ρA(0)⊗ ρE(0)) U †AE(t) (5.23)

Both qubits may become entangled with each other in the course of the evolution,
and when measured individually, may appear in mixed states, but the combined
system remains pure. What will the evolution of qubit A, ignoring the environment
qubit B, look like?

To answer this question we rewrite equation (5.23) in more detail. Let Latin
indexes, i, j, k, and l, label basis states in the Hilbert space of qubit A and let
Greek indexes, α, β, γ, and δ, label basis states in the Hilber space of qubit E.
Then, since UAE is ultimately a linear operation, we can represent it as follows

UAE(t) =
∑

i,α,β,j

| i〉 | α〉Uiαβj(t)〈β | 〈j |,

where
Uiαβj = 〈i | 〈α | UAE | β〉 | j〉 (5.24)

Furthermore, since ρE(0) is pure, we can rewrite it as

ρE(0) =| ΨE(0)〉〈ΨE(0) |
Substituting these in equation (5.23) yields

ρAE(t) =
∑

i,α,β,j

| i〉 | α〉Uiαβj(t)〈β | 〈j |

ρA(0) | ΨE(0)〉〈ΨE(0) |∑

k,γ,δ,l

| k〉 | γ〉U†kγδl(t)〈δ | 〈l |

Contractions of | ΨE(0)〉 and 〈ΨE(0) | with appropriate bras and kets of the Greek
index type produces numbers, which multiply the Uiαβj and U†kγδl terms resulting
in

ρAE(t) =∑

i,α,β,j,k,γ,δ,l

| i〉 | α〉Uiαβj〈β | ΨE(0)〉〈j | ρA(0) | k〉〈ΨE(0) | γ〉U†kγδl〈δ | 〈l |
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Now we are going to trace-out the environment qubit. This is done by taking the
unsaturated dangling bras and kets of the Greek kind, here they are

. . . | α〉 . . . 〈δ | . . .

and turning them on each other:

| α〉〈δ |→ 〈α | δ〉 = δαδ,

where δαδ is the Kronecker delta. In expressions involving sums over all indexes,
this trick produces a trace. And so we obtain

ρA(t) =∑

i,α,β,j,k,γ,δ,l

δαδ | i〉Uiαβj〈β | ΨE(0)〉〈j | ρA(0) | k〉〈ΨE(0) | γ〉U†kγδl〈l |

=
∑

i,α,β,j,k,γ,l

| i〉Uiαβj〈β | ΨE(0)〉〈j | ρA(0) | k〉〈ΨE(0) | γ〉U†kγαl〈l |

=
∑
α

∑

i,j,k,l

| i〉

∑

β

Uiαβj〈β | ΨE(0)〉

 〈j | ρA(0) | k〉

(∑
γ

〈ΨE(0) | γ〉U†kγαl

)
〈l |

Expression

| i〉

∑

β

Uiαβj〈β | ΨE(0)〉

 〈j | (5.25)

represents a matrix element of an operator, let us call it Mα, and what’s in the
brackets is 〈i |Mα | j〉, This operator acts on ρA(0). Similarly

| k〉
(∑

γ

〈ΨE(0) | γ〉U†kγαl

)
〈l | (5.26)

represents a matrix element of M †
α. What’s in the brackets is 〈k |M †

α | l〉. This
operator acts on ρA(0) from the right. And so we find that

ρA(t) =
∑
α

Mα(t)ρA(0)M †
α(t) (5.27)

Operations of the form given by equation (5.27) are variously called. Some people
call them quantum operations, others call them super operations, and yet others
just call them maps. They map ρA(0) onto ρA(t). They are linear, obviously, but
not necessarily unitary.
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We have encountered a map of a similar kind in section 5.10. The operation that
reversed the polarity of one of the qubits, while keeping the other qubit intact, was
a map.

Let us call a map given by (5.27) A and reserve square brackets for its argument.

The fancy looking symbol, A, is a Gothic “A”. Mathematicians and physi-

cists resort to Gothic letters only when they have run out of other options

and are getting desperate. On the other hand, some mathematicians pre-

fer to use normal letters and brackets for everything, because, after all, just

about everything in mathematics is a mapping of some sort. But this pro-

duces formulas that can be difficult to read, because it is hard to see at first

glance what’s what. Our preference is for a moderately baroque notation that

emphasizes geometric and transformation properties of various objects.

In our case A is defined by:

ρ(t) = A [ρ(0)] =
∑
α

Mα(t)ρA(0)M †
α(t).

Map A must satisfy certain conditions if it is to be physical, namely, we must
ensure that A [ρ(0)] produced by it is still a valid density operator.

Recall equation 5.24 above. It implies that

〈i |Mα | j〉 =
∑

β

Uiαβj〈β | ΨE(0)〉

= 〈i | 〈α | UAE | ΨE(0)〉 | j〉,
which yields

Mα = 〈α | UAE | ΨE(0)〉
This expression is a symbolic abbreviation that is often used in place of the more
detailed, but less readable (5.25) and (5.26).

Now it is easy to demonstrate that
∑
α

M †
αMα = 1A

This will come handy in showing that map A is physical.
We begin by expanding

∑
α

M †
αMα

=
∑
α

〈ΨE(0) | U †AE | α〉〈α | UAE | ΨE(0)〉

= 〈ΨE(0) | U †AEUAE | ΨE(0)〉
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Expression M †
αMα implies multiplication of matrices M in the (i, j) space, i.e.,

in the qubit A space. Additionally, the sum over | α〉〈α | produces multiplication
in the (α, β) space, i.e., in the qubit E space. In effect U †AEUAE is indeed full
multiplication in both spaces, and therefore it must yield 1A ⊗ 1E , because UAE

is unitary. So, we obtain
∑
α

M †
αMα

= 〈ΨE(0) | 1A ⊗ 1E | ΨE(0)〉
= 1A〈ΨE(0) | ΨE(0)〉 = 1A

Armed with this fact we can immediately show that map A preserves trace of ρA(0).
Recall that Tr(AB) = Tr(BA) and that Tr(A + B) = Tr(A) + Tr(B). Hence

TrAA [ρA(0)] = Tr
∑
α

MαρA(0)M †
α

=
∑
α

Tr
(
MαρA(0)M †

α

)
=

∑
α

Tr
(
ρA(0)MαM †

α

)

=
∑
α

Tr
(
ρA(0)M †

αMα

)
= Tr

(∑
α

ρA(0)M †
αMα

)

= Tr

(
ρA(0)

∑
α

M †
αMα

)
= Tr (ρA(0)1A)

= Tr (ρA(0))

It is easy to see that A preserves positivity of ρA(0). Consider

〈ΨA | ρA(t) | ΨA〉
for an arbitrary vector | ΨA〉 in the A space. On substituting Mαs we get

∑
α

〈ΨA |MαρA(0)M †
α | ΨA〉

But M †
α | ΨA〉 is some other vector | Φα〉 in the A space, and, since ρA(0) is

positive, we find that each 〈Φα | ρA(0) | Φα〉 term is positive and so their sum is
positive too, which implies that 〈ΨA | ρA(t) | ΨA〉 is positive.

Finally we can demonstrate that A preserves hermicity of ρ, i.e., that if ρ(0) =
ρ†(0) then ρ(t) = ρ†(t):

ρ†(t) =

(∑
α

Mαρ(0)M †
α

)†
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=
∑
α

(
Mαρ(0)M †

α

)†

=
∑
α

(
M †

α

)†
ρ†(0)M †

α

=
∑
α

Mαρ(0)M †
α

= ρ(t),

where we have used (AB)† = B†A† and ρ†(0) = ρ(0) in the third line.
In summary, whatever A does to ρA(0) the resulting new operator can be still

interpreted as a density operator.
The operator sum representation of A in terms of operators Mα, as given by

equation (5.27), is not unique, because the same non-unitary evolution may result
from various forms of entanglement between qubits.

5.11.2 Depolarization

Let us consider the phenomenon of depolarization that we saw in section 2.11,
page 83. The unitary description of a single qubit, alone, cannot describe the
gradual depolarization we observed. Schrödinger equation predicts undamped Rabi
oscillations and undamped Larmor precession for such a system.

But when the single qubit is a part of a larger system, then its behavior may
change dramatically.

The unitary formalism describes polarization changes in terms of rotations and
flips. A typical example of a flip operation is the σx Pauli matrix, the not gate:

σx

(
a
b

)
=

(
0 1
1 0

)(
a
b

)
=

(
b
a

)

What does this operation do to vector r? It swaps a and b, and therefore it changes
the sign of rz and ry:

rz = aa∗ − bb∗ → bb∗ − aa∗ = −rz

rx = ab∗ + ba∗ → ba∗ + ab∗ = rx

ry = i(ab∗ − ba∗) → i(ba∗ − ab∗) = −ry

But other flips are possible too. Let us have a look at what σz does to a qubit.

σz

(
a
b

)
=

(
1 0
0 −1

) (
a
b

)
=

(
a
−b

)
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What is the effect of this operation on r?

rz = aa∗ − bb∗ → aa∗ − bb∗ = rz

rx = ab∗ + ba∗ → −ab∗ − ba∗ = −rx

ry = i(ab∗ − ba∗) → i(−ab∗ + ba∗) = −ry

This operation changes the sign of rx and ry while leaving rz intact.
Finally, σy does the following

σy

(
a
b

)
=

(
0 −i
i 0

)(
a
b

)
=

( −ib
ia

)

And this translates into

rz = aa∗ − bb∗ → bb∗ − aa∗ = −rz

rx = ab∗ + ba∗ → −ba∗ − ab∗ = −rx

ry = i(ab∗ − ba∗) → −i(ba∗ − ab∗) = ry

In summary, σx rotates r by 180◦ around the x axis, σy rotates r by 180◦ around
the y axis, and σz rotates r by 180◦ around the z axis.

Everyone of these three transformations is a unitary transformation, because

1. every Pauli matrix is Hermitian, and

2. the square of every Pauli matrix is 1

therefore for every Pauli matrix

σiσ
†
i = σiσi = 1,

which is a sufficient condition for σi to be unitary.
Suppose the qubit is a part of a larger system of three qubits with the other two

qubits providing a simplistic model of an “environment”. The basis states of the
environment are:

| 0E〉⊗ | 0E〉 ≡ | 0E〉
| 0E〉⊗ | 1E〉 ≡ | 1E〉
| 1E〉⊗ | 0E〉 ≡ | 2E〉
| 1E〉⊗ | 1E〉 ≡ | 3E〉

Where the notation on the right hand side is a simplified way to denote the envi-
ronment biqubit basis states.
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Let the initial state of the whole system be

| ΨA〉⊗ | 0E〉

We consider a transformation UAE of this system into

UAE | ΨA〉 | 0E〉 =
√

1− κ | ΨA〉⊗ | 0E〉

+
√
κ

3
σx | ΨA〉⊗ | 1E〉+

√
κ

3
σy | ΨA〉⊗ | 2E〉+

√
κ

3
σz | ΨA〉⊗ | 3E〉,

where κ is the probability that the qubit is going to flip, where we allow it to flip
about the x, y or z axis with equal probability of κ/3. The probability that the
qubit is not going to flip is 1− κ. If the qubit does not flip, the environment stays
in the | 0E〉 state. If the qubit flips about the x axis, the environment switches to
the | 1E〉 state. If the qubit flips about the y axis, the environment switches to the
| 2E〉 state. And if the qubit flips about the z axis, the environment switches to
the | 3E〉 state. Thus, the environment responds differently to every possible flip,
recording, as it were, what has happened.

The initial and final state of this operation are pure tri-qubit states, therefore the
operation itself is unitary in the tri-qubit space, but it is not going to be unitary
in the single qubit space. The corresponding map A will have the following Mα

operator representation:

M0 = 〈0E | UAE | 0E〉 =
√

1− κ1A

M1 = 〈1E | UAE | 0E〉 =
√
κ

3
σx

M2 = 〈2E | UAE | 0E〉 =
√
κ

3
σy

M3 = 〈3E | UAE | 0E〉 =
√
κ

3
σz

The resulting transformation of ρA is now

ρA(t) = A [ρA(0)]

= M0ρA(0)M †
0 + M1ρA(0)M †

1 + M2ρA(0)M †
2 + M3ρA(0)M †

3

= (1− κ)ρA(0) +
κ

3
σxρA(0)σx +

κ

3
σyρA(0)σy +

κ

3
σzρA(0)σz

Let us apply this formula first to a general case of ρA = 1
2 (1 + r · σ). We can

always rotate our system of coordinates so that ez is aligned with r, so without a
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loss of generality we can simplify it to ρA = 1
2 (1 + rσz). Because Pauli matrices

anti-commute and square to 1 we find that

σxσzσx = −σzσxσx = −σz,

σyσzσy = −σzσyσy = −σz,

σzσzσz = σz.

And so

A [ρA] = (1− κ)ρA +
κ

3
σxρAσx +

κ

3
σyρAσy +

κ

3
σzρAσz

=
1
2

(
1 + r

(
1− 4κ

3

)
σz

)

We find that although vector r does not change its direction, it shrinks.
Suppose that A is a continuous process meaning that there is a certain probability

Γ of A happening to the qubit per unit time. Then κ = Γ∆t. As time goes by the
process repeats every ∆t beginning with t = 0 at which time r = r(0). After the
first ∆t, the original r shrinks to r(∆t) = (1 − 4Γ∆t/3)r(0). After the second ∆t
this new r shrinks to r(2∆t) = (1−4Γ∆t/3)r(∆t) = (1−4Γ∆t/3)(1−4Γ∆t/3)r(0).

After n such applications of A the length of the polarization vector, r, will have
shrunk to r(n∆t) = (1− 4Γ∆t/3)nr(0).

Let ∆t = t/n then

r(t) =
(

1− 4
3

Γt
n

)n

r(0)

The expression gets more accurate with the shrinking of ∆t and with n → ∞. In
the limit we get

r(t) = lim
n→∞

(
1− 4

3
Γt
n

)n

r(0) = e−4Γt/3r(0),

where we have explored the same trick that gave us equation (4.42) on page 148.
We see that the qubit depolarizes exponentially. This is indeed what we saw in
section 2.11.

5.11.3 Dephasing

Our next model is quite different. This time we are going to investigate the possible
effect that entanglement with a biqubit environment E has on the third qubit A, the
state of which does not change nominally. Growing entanglement, that manifests
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in the environment flipping its state, is the only thing that happens. There are no
random spin-flips of qubit A here.

Assuming that the initial state of the qubit-biqubit system is | 0A〉 | 0E〉 or
| 1A〉 | 0E〉, the final state is going to be:

UAE :| 0A〉 | 0E〉 →
√

1− κ | 0A〉 | 0E〉+
√
κ | 0A〉 | 1E〉

UAE :| 1A〉 | 0E〉 →
√

1− κ | 1A〉 | 0E〉+
√
κ | 1A〉 | 2E〉

In other words, there is a probability κ that the environment is going to flip on
qubit A from | 0E〉 to | 1E〉 if the state of qubit A is | 0A〉 and there is also similar
probability κ that the environment is going to flip on qubit A from | 0E〉 to | 2E〉
if the state of qubit A is | 1A〉. But then, there is also some probability 1 − κ, in
both cases, that the environment is going to stay as it is.

The operator-sum representation of this interaction will have three terms, with
M i given by:

M0 = 〈0E | UAE | 0E〉
M1 = 〈1E | UAE | 0E〉
M2 = 〈2E | UAE | 0E〉,

where M i are operators that act in the space of qubit A. There is no M3 term
here, because we don’t make any use of | 3E〉 in our definition of UAE . Qubit A
entangles with a 3-dimensional subspace of biqubit E.

It is easy to see that

〈0E | UAE | 0E〉 =
√

1− κ1A

For M1 we find that it acts on | 0A〉 as follows

〈1E | UAE | 0A〉 | 0E〉
= 〈1E |

(√
1− κ | 0A〉 | 0E〉+

√
κ | 0A〉 | 1E〉

)

=
√
κ | 0A,

but produces zero, when acting on | 1A〉. The matrix representation of M1 is
therefore

M1 =
√
κ

(
1 0
0 0

)

On the other hand, M2 produces zero when acting on | 0A〉, but when it acts on
| 1A〉 it produces

〈2E | UAE | 1A〉 | 0E〉



258 Chapter 5

= 〈2E |
(√

1− κ | 1A〉 | 0E〉+
√
κ | 1A〉 | 2E〉

)

=
√
κ | 1A〉.

Hence, its matrix representation is

M2 =
√
κ

(
0 0
0 1

)

The resulting map A is

A [ρA] = M0ρAM †
0 + M1ρAM †

1 + M2ρAM †
2

= (1− κ) ρA + κ

(
1 0
0 0

)
ρA

(
1 0
0 0

)
+ κ

(
0 0
0 1

)
ρA

(
0 0
0 1

)

Observe that
(

1 0
0 0

)(
ρ00 ρ01

ρ10 ρ11

)(
1 0
0 0

)
=

(
ρ00 0
0 0

)

and (
0 0
0 1

)(
ρ00 ρ01

ρ10 ρ11

)(
0 0
0 1

)
=

(
0 0
0 ρ11

)
.

Hence

A [ρA] = (1− κ) ρA + κ

(
ρ00 0
0 ρ11

)
=

(
ρ00 (1− κ)ρ01

(1− κ)ρ10 ρ11

)

Now, suppose that the probability of such an entanglement happening to the qubit-
biqubit system per unit time is Γ, so that κ = Γ∆t. We are going to reason here
the same way we reasoned in the previous section about depolarization. After a
short time ∆t, the density matrix of qubit A becomes

ρA(∆t) =
(

ρ00(0) (1− Γ∆t)ρ01(0)
(1− Γ∆t)ρ10(0) ρ11(0)

)

Then after two such time intervals:

ρA(2∆t) =
(

ρ00(0) (1− Γ∆t)2ρ01(0)
(1− Γ∆t)2ρ10(0) ρ11(0)

)

And after n intervals such that t = n∆t we find that

ρA(t) =
(

ρ00(0) (1− Γ∆t)t/∆tρ01(0)
(1− Γ∆t)t/∆tρ10(0) ρ11(0)

)
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In the limit ∆t→ 0 we get

lim
∆t→0

(1− Γ∆t) = e−Γt

Thus

ρA(t) =
(

ρ00(0) e−Γtρ01(0)
e−Γtρ10(0) ρ11(0)

)
. (5.28)

The exponential vanishing of the off-diagonal terms implies the exponential vanish-
ing of x and y components of spin. Here we observe not so much depolarization,
but exponentially rapid projection of the spin onto the ez direction. This happens
not because a force or a torque has been applied to the qubit, but because the
qubit has become entangled with the biqubit that here, in this simplified model
represents the environment.

This phenomenon may be thought of as a very simple unitary model of the mea-
surement process. When a qubit, that may be polarized in any direction, encounters
the measuring apparatus, it entangles with it. The effect of this entanglement is
an almost instantaneous projection of the qubit onto the measurement direction of
the apparatus, which is here represented by ez. Any information contained in rx

and ry becomes lost in the process. Only information contained in rz survives. In
order to recover all information that characterizes the qubit, we have to repeat the
measurements for the other two directions on the statistical ensemble of identically
prepared qubits.

Recall from Section 4.8.2 (page 153) that the unitary formalism encodes infor-
mation about rx and ry in the form of a phase difference between |↑〉 and |↓〉 within
the superposition. From the unitary formalism point of view, the loss of rx and ry

means the loss of knowledge about this phase difference, hence the term dephasing
or phase damping that physicists use when discussing this process.

Figure 2.9 (B) in Chapter 2, Section 2.11, page 88, illustrates the method of
measuring the decoherence time τ = 1/Γ. In the Ramsey experiment we flip the
qubit from its |↑〉 state to its |→〉 state first—in the unitary formalism, this is
(|↑〉+ |↓〉) /√2. Then we let it precess about B‖ while the transverse buzzing field
B⊥ is switched off. After some time, we turn the buzzing field B⊥ back on. If the
qubit’s polarization rotated around the equator of the Bloch sphere by a multiple
of 2π, we are back to the starting point and the polarization continues on its march
towards the south pole. If the qubit’s polarization rotated around the equator
of the Bloch sphere by an odd multiple of π, the qubit’s polarization will move
back towards the north pole. If the measurements are repeated for increasing time
between the two buzzing signals we end up with “Ramsey fringes”, i.e., with a curve
that looks like a sinusoid.
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The curve in Figure 2.9 (B) looks somewhat like a sinusoid, but it is damped.
The damping here is exponential and derives from the dephasing of the qubit. The
superposition state (|↑〉+ |↓〉) /√2 does not last as it rotates around the equator
of the Bloch sphere. Because of the qubit’s entanglement with the environment
it decays exponentially towards either |↑〉 or |↓〉, so that when the second buzzing
signal gets turned on, the polarization may no longer be on the equator of the Bloch
sphere. The result of this is that as time between the two Rabi signals is extended,
the qubit’s final state becomes increasingly chaotic. The qubit’s decoherence time
τ can be read from the envelope of the curve and it can be easily seen to be on the
order of a µs.

5.11.4 Spontaneous Emission

Spontaneous emission occurs when a quantum system that is in a higher energy
state initially all of a sudden decays, for no apparent reason, to a lower energy
state, emitting some energy quanta in the process. The quanta may be photons,
but they may be other particles, too.

A reverse process to spontaneous emission is spontaneous absorption. Here a
quantum system absorbs energy quanta from its environment and upgrades itself
to a higher energy state.

Both processes are different from unitary absorption or emission of energy as
described by the Schrödinger equation. The difference is that here we don’t have
an obvious driver. We don’t know the reasons for the decay or for absorption.
There may not be any reasons, or, as we shall see shortly, the reason may be
the entanglement with the environment. In both cases, the resulting process is
non-unitary, and described in terms of map A.

The simplest possible model of spontaneous emission is given by the following
two equations that define UAE .

UAE | 0A〉 | 0E〉 = | 0A〉 | 0E〉 (5.29)

UAE | 1A〉 | 0E〉 =
√

1− κ | 1A〉 | 0E〉+
√
κ | 0A〉 | 1E〉 (5.30)

In plain English, if the observed qubit A is in the ground state, it stays in the
ground state. Nothing changes. But if it is in the higher energy state, | 1A〉, then
there is a probability of κ that it is going to decay, transferring the energy to the
environment that now flips from | 0E〉 to | 1E〉. And then, there is also a probability
1− κ that qubit A is going to stay in state | 1A〉.

This process differs from depolarization. If this was depolarization, then we would
also allow state | 0A〉 to flip to | 1A〉. We use only two states of the environment
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here: | 0E〉 and | 1E〉, so we are going to have only two operators M i with i = 0
and 1. They are defined by

M0 = 〈0E | UAE | 0E〉 (5.31)

M1 = 〈1E | UAE | 0E〉. (5.32)

In order to reconstruct the matrices of M0 and M1 in the space of qubit A we
need to find out what are the effects of M0 and M1 acting on the basis vectors of
qubit A. And so

M0 | 0A〉 = 〈0E | UAE | 0A〉 | 0E〉 = 〈0E (| 0A〉 | 0E〉) =| 0A〉 (5.33)

M0 | 1A〉 = 〈0E | UAE | 1A〉 | 0E〉 = 〈0E

(√
1− κ | 1A〉 | 0E〉+

√
κ | 0A〉 | 1E〉

)

= 〈0E

√
1− κ | 1A〉 | 0E〉 =

√
1− κ | 1A〉 (5.34)

This tells us that the matrix of M0 is diagonal and looks as follows:

M0 =
(

1 0
0
√

1− κ
)
. (5.35)

Similarly, for M1 we find:

M1 | 0A〉 = 〈1E | UAE | 0a〉 | 0E〉 = 〈1E | (| 0A〉 | 0E〉) = 0 (5.36)

M1 | 1A〉 = 〈1E | UAE | 1a〉 | 0E〉 = 〈1E |
(√

1− κ | 1A〉 | 0E〉+
√
κ | 0A〉 | 1E〉

)

= 〈1E |
√
κ | 0A〉 | 1E〉 =

√
κ | 0A〉 (5.37)

Hence, the resulting matrix of M1 is

M1 =
(

0
√
κ

0 0

)
(5.38)

And the map A looks as follows:

A [ρA] = M0ρAM †
0 + M1ρAM †

1

=
(

1 0
0
√

1− κ
)

ρA

(
1 0
0
√

1− κ
)

+
(

0
√
κ

0 0

)
ρA

(
0 0√
κ 0

)

For a general ρA =
(
ρ00 ρ01

ρ10 ρ11

)
this becomes

A [ρA] =
(

ρ00

√
1− κρ01√

1− κρ10 (1− κ)ρ11

)
+

(
κρ11 0

0 0

)

=
(
ρ00 + κρ11

√
1− κρ01√

1− κρ10 (1− κ)ρ11

)
(5.39)
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Now, suppose we apply A twice. The resulting new ρ in terms of the original ρ is
going to look as follows.

A [A [ρA]] =
(
ρ00 + κρ11 + κ(1− κ)ρ11

√
1− κ√1− κρ01√

1− κ√1− κρ10 (1− κ)(1− κ)ρ11

)
(5.40)

As we apply A n times it is easy to see that the off-diagonal terms simply get
multiplied by (1− κ)n/2 and the ρ11 term gets multiplied by (1− κ)n. The ρ00

term behaves as follows:

for n = 0 : ρ00

for n = 1 : ρ00 + κρ11

for n = 2 : ρ00 + κρ11 + κ(1− κ)ρ11

for n = 3 : ρ00 + κρ11 + κ(1− κ)ρ11 + κ(1− κ)2ρ11

. . .

So for an arbitrary n this becomes

ρ00 + κρ11 + κ(1− κ)ρ11 + . . .+ κ(1− κ)n−1ρ11

= ρ00 + κρ11

n−1∑

k=0

(1− κ)k

The sum in this expression is the sum of a geometric series, which evaluates to

n−1∑

k=0

(1− κ)k =
1− (1− κ)n

1− (1− κ)
=

1− (1− κ)n

κ
(5.41)

So,

κ

n−1∑

k=0

(1− κ)k = 1− (1− κ)n (5.42)

And so the (0, 0) term of the density matrix becomes

ρ00 + ρ11 (1− (1− κ)n) (5.43)

Now, let us again exploit the trick that has served us so well in the previous
sections. We assume that κ = Γ∆t, where n∆t = t. Then

An [ρA] =

(
ρ00 + ρ11

(
1− (

1− Γ t
n

)n) (
1− Γ t

n

)n/2
ρ01(

1− Γ t
n

)n/2
ρ10

(
1− Γ t

n

)n
ρ11

)
(5.44)
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In the limit n→∞ and ∆t→ 0 such that n∆t = t we obtain

ρ(t) =
(
ρ00(0) + ρ11(0)

(
1− e−Γt

)
e−Γt/2ρ01(0)

e−Γt/2ρ10(0) e−Γtρ11(0)

)
(5.45)

We find that as time flows the system converges exponentially on a state that
“points up”, which is the lower energy state, | 0A〉.

If the original state | Ψ(0)〉 had a non-vanishing amplitude of being registered
in the | 1A〉 state, the amplitude would decay exponentially to zero, as would
amplitudes of finding the system in any of the transverse states, |→〉 or | ⊗〉. For
this reason physicists call this process amplitude damping.

Spontanous emission has one beneficial side effect. We can use it to force a
quantum system, which may have been in some thermal chaotic state initially, to
cool down and become pure. This is how quantum computations often begin.

5.12 Schrödinger’s Cat

Here is the sad story of the Schrödinger’s cat.
Schrödinger conceived of a following gedanken experiment.
A quantum system, for example, an atom of Rubidium is put in a superposition

state of two so called circular Rydberg levels with principal quantum numbers of
51 (we call this the | e〉 state) and 50 (we call this the | g〉 state).

Circular Rydberg states are states of multi-electron atoms, for example

atoms such as Rubidium, which has 37 electrons normally. They are char-

acterized by large magnetic quantum numbers that derive from the orbital

motion of many electrons around the nucleus. They are also characterized

by large principal quantum numbers of their valence electrons, i.e., electrons

that are in the outer shells of the atom. They tend to respond strongly to

electromagnetic stimulation and have long lifetimes. The circular Rydberg

states of Rubidium mentioned here have a lifetime of 30 ms. For these rea-

sons multi-electron atoms in circular Rydberg states are often used in quan-

tum experiments, including quantum computing systems. The other reason

is that the energy difference between | e〉 and | g〉 is in the microwave range,

51.099 GHz. Electromagnetic radiation in this range can be controlled with

great precision.

The atom is observed by a detector, which is connected to a vial filled with
poisonous gas. The detector works by smashing the vial if it detects the atom in
the | e〉 state and not smashing it if it detects the atom in the | g〉 state.
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Now comes the cruelty of this needless experiment—gedanken or not. The con-
traption is put in a sealed box together with a live cat. And Dr. Schrödinger says,
“because the cat becomes coupled to the atom through the contraption with the
vial of poison, the amount of poison being sufficient to kill the cat, the cat, like the
atom, should be in a superposition of two states: | alive〉 and | dead〉. And yet, if
we were to peek into the box, we would find the cat either alive or dead, and not
in between.”

The real purpose of this somewhat exaggerated gedanken experiment was to point
out that we could not separate the logic of the microscopic, quantum world, from
the logic of the macroscopic world—that we could always conceive of some situation
in which the states of the microscopic world had a direct bearing on macroscopic
systems.

As is often the case with gedanken experiments, the conclusions drawn depend
on great many untold assumptions. Gedanken experiments became fashionable
after Einstein’s initial success with them. But Einstein’s experiments dealt with
macroscopic systems and with macroscopic physics, all of which we are familiar
with. The situations were made strikingly simple so as to expose a particular point
Einstein was after. But there is nothing so simple when it comes to coupling between
an atom and a macroscopic system. The difference between the two is described
by the Avogadro number, 6.02252 × 1023/mol—there is an Avogadro number of
interacting atoms in the detector versus only one atom the detector observes.

We have seen in this chapter the degree of complexity that arises when we move
from contemplating one qubit to contemplating two qubits. Imagine the mind-
boggling complexity if we were to switch from one qubit to Avogadro number of
qubits. What would the density operator of such a system look like? What would
be the atom’s evolution if we were to trace out the detector? And what would be
the detector’s evolution if we were to trace out the atom?

As to the cat, we should really take it out of the box, because its presence only
confuses the issue. The difference between | live〉 and | dead〉 is nowhere near as
sharply defined as the difference between the | e〉 and | g〉 states of the atom. The
cat may be sick, very sick, half dead, barely alive, or. . . very angry. It may also rub
against the detector and trigger the mechanism regardless of the state of the atom.

Rather than focusing on the cat, we could focus on the vial itself and contemplate
a superposition of | smashed〉 and | whole〉. And we don’t need to fill it with poison.

But the presence of the vial confuses the issue just as much as the presence of
the cat. Clearly, it is the detector itself and its interaction with the atom that is
of interest to us here. How the detector manifests the detected state of the atom,
be it by smashing a vial, or beeping, or moving a pointer, is of secondary impor-
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tance. What is important, is that the detector entangles with the observed atom
somehow—some physical interaction must be present—and eventually responds to
the state of the atom by counting either “up” or “down”, with the “up” response
on the detector side leaving the atom in the | e〉 state and the “down” response on
the detector side leaving the atom in the | g〉 state. The atom will dephase, and
the detector will respond to the atom’s dephasing by dephasing itself into a state
that can be read by us.

This is how detectors work.
What greatly puzzled physicists in Schrödinger’s days was that back then they

believed that it was the “act of observation”, however ill-defined, that was respon-
sible for the observed quantum system flipping to one of its basis states. Some
even believed that a conscious observer was needed. This resulted in one of the
axioms of quantum mechanics stating that “upon observation a quantum system
finds itself irreversibly in one of its basis states”. It is for this reason that they also
believed that the cat would be fine as long as we wouldn’t peek into the box. In
other words that it would be our act of observing the cat that would throw it out
of the superposition of (| dead〉+ | alive〉) /√2.

The other issue here is what we referred to in Section 4.3, page 117, as “The
Superstition of Superposition”. There we argued that a state that is in a superpo-
sition of two basis states is not in both states at the same time, but, instead, it is
in neither. It is in a third state that is altogether different. The physical meaning
of this third state is not always easy to figure out, but it can be always identified
by evaluating the full density operator and the full vector of probabilities for the
state. Consequently, even if we could put the cat in the superposition of | dead〉
and | alive〉, it may not necessarily be something out of this world—it may, instead,
be just | sick〉.

Today we have a more sophisticated view of what goes on. We don’t need an ax-
iom. We can derive the dynamics of the combined system from the basic principles
of quantum mechanics using just the Schrödinger equation, in principle and in prac-
tice even, as long as the detector itself is not too large. A detector comprising the
Avogadro number of atoms is out of the question here. It is not computable. But
a detector comprising no more than 10 qubits can be analyzed fully and if the cor-
responding system can be implemented in a laboratory, the theoretical predictions
can be compared against the actual measurements.
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5.12.1 The Haroche–Ramsey Experiment

Just such an experiment was carried out by Haroche and his colaborators, Brune,
Hagley, Dreyer, Mâıtre, Maali, Wunderlich and Raimond, at the Kastler Brossel
Laboratory of the Paris l’Ecole Normale Supérieure in 1996 [9]. The experiment
is similar to Ramsey measurement, but with an important modification, hence the
name.

Haroche’s group created an “atom + measuring apparatus” system in which
the measuring apparatus was a mescoscopic cavity holding up to 10 photons. They
demonstrated that the photons in the cavity themselves were put in a superposition
of states by their interaction with the atom. Then they observed their dephasing
and transformation of the cavity state into a statistical mixture. The observed
behaviour of the system was contrasted with theoretical predictions [12] obtained
by an analysis somewhat like what we have presented in section 5.11—with the
difference that instead of entangling a qubit with another qubit, here we entangle
it with 10 photons—and a highly accurate match was demonstrated.

Figure 5.9: Setup for the Haroche-Ramsey experiment, from [9]

The measurement setup for the experiment is shown in Figure 5.9. The whole
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apparatus is placed in vacuum and cooled to 0.6 K to reduce thermal radiation to
a negligible level.

The cylindrical can labeled O is an oven that effuses Rubidium atoms. The atoms
emerging from the oven are first conditioned by diode lasers L1 and L′1 so that a
certain subset of them, namely the ones that move with velocity of 400±6 m/s, and
these atoms only, are in a state that is then pumped into a circular Rydberg state
| e〉 in the box labeled B. This procedure prepares on average 1/2 an atom every
1.5 ms, and it takes about 2µs in B to condition the atom. Other atoms will be
naturally filtered away by the remaining part of the experiment, so we can forget
about them.

As the selected atoms cross the cavity labeled R1, in which they spend a precise
amount of time, on account of their selected velocity, their quantum state | e〉 is
rotated by π/2 into (| e〉+ | g〉) /√2. This is the Rabi rotation we had studied in
section 2.10, page 75.

Let us, for the moment, assume that there is no cavity labeled S. As the atoms
fly from the microwave cavity R1 to the microwave cavity R2 they precess, and are
then rotated again by π/2 in R2. So, we end up with a pure Ramsey experiment,
like the one discussed in section 2.10, that is here carried out on atoms of Rubidium
in these two circular Rydberg states. The atoms have more states than just | e〉
and | g〉, but the dynamics of the experiment is confined to these two states only.
Consequently, this is a qubit experiment, which is good, because qubits are simple
and easy to understand.

Past the microwave cavity R2 there are two field ionization detectors, De and
Dg. The first one is tuned to detect atoms in state | e〉 and the second one is tuned
to detect atoms in state | g〉. Both have detection efficiency of 40± 15%.

The frequency of the Rabi oscillations field in cavities R1 and R2 is varied
slightly—by up to 10 kHz—around the resonance Rabi frequency for the | e〉 →| g〉
transition, ν0 = 51.099 GHz. The variation is only two parts per 10 million, sic!.
This has a similar effect to stretching or shrinking the free precession time between
the two Ramsey pulses, so that when the atoms are finally detected either at De or
Dg we observe Ramsey fringes as shown in Figure 5.10 (a). It’s just that instead of
observing the fringes in function of time elapsed between the two Ramsey pulses,
here we observe them in function of the pulse frequency.
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Figure 5.10: Ramsey fringes, from [9]. (a) the microwave cavity C contains no
photons, (b)–(d) the microwave cavity C contains photons, frequency detuning is
(b) 712 kHz, (c) 347 kHz, (d) 104 kHz.

What is plotted in the diagrams of Figure 5.10 is the measured probability of
detecting an atom in the | g〉 state, based on the exploration of a statistical ensemble
of 1000 events per each point of the graph and sampling for 50 discrete values of
frequency ν [27]. To collect enough statistics for each graph takes about 10 minutes.
The expected standard deviation for a count of 1000 is

√
1000 ≈ 32 (see, e.g., [19]),

which yields the relative error in the estimated probability of about 3%. The smooth
lines are sinusoids fitted through the experimental data.

Even though the detector efficiencies are about 40% only, here we take a ratio of
Ng to Ng + Ne, where Ng and Ne are the actually registered counts, so the curve
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in Figure 5.10 should vary between 0 and 1 in principle. Instead it is squashed
to between 0.22 and 0.78, on average, or, to put it in another way, its contrast is
reduced to 55±5%. This is, amongst other reasons, because of static and microwave
field inhomogeneities over the diameter of the qubit beam, which is 0.7 mm. The
finite lifetime of the | e〉 and | g〉 states contributes to this loss of contrast as well.

Now let us turn our attention to the cavity called C. C stands for “cat”. This
is the mesoscopic “detector” the atom interacts with. The cavity is made of two
concave superconducting niobium mirrors separated by about 2.7 cm. The diameter
of each mirror is 5 cm and the curvature radius of their inner surface is 4 cm. The
electromagnetic fields trapped between the mirrors are focused on a small region
between them that is about 6 mm across. The Rubidium beam traverses the region
in about 19µs.

The field in the cavity is quantized and coherent. This had been demonstrated
prior to the Haroche–Ramsey experiment by the the Haroche group [10] and was one
of the first such observations in history, even though the idea of the electromagnetic
field quantization goes back to the Einstein’s photoelectric effect paper of 1905
[15].7 The cavity field quantization and coherence can be observed because it is
extremely weak and the cavity is cooled to near absolute zero. The average number
of photons in the cavity varies between 0 and 10, their lifetime is about 160µs
and their collective state prior to the interaction with the atom can be described
symbolically by | α〉.

Interaction between the qubit and this kind of a quantum field is not quite like
interaction between the qubit and the classical Rabi field, which we discussed in
Section 2.10. Here the interaction is with just a handful of photons, the number
of which is quantumly uncertain, meaning that there is a certain distribution P (n)
that gives us the probability of there being n photons in the cavity. This problem
was worked out by Jaynes and Cummings in 1963 [32] and the result is such that
if the cavity is filled with photons of the | e〉 →| g〉 transition frequency, then the
probability of the transition is

P|e〉→|g〉(t) =
∑

n

P (n) sin2
(
Ω
√
n+ 1t

)
(5.46)

where t is the time of interaction and Ω = 2π × 24 kHz is the qubit-field coupling.
This parameter plays a role similar to the Rabi frequency in this special context.

The exact distance between the mirrors can be varied, which results in tuning
the cavity. It can be tuned so that the field frequency in it matches the | e〉 →| g〉

7In the Planck’s original derivation of the black body radiation formula, it was the matter’s
ability to absorb and emit radiation that was quantized, not the electromagnetic field.
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transition frequency, but instead it is detuned by between δ = 2π × 70 kHz and
δ = 2π × 800 kHz. In effect, when the Rubidium atoms traverse the field region,
the frequency of the field is too far from the Rabi frequency and the atoms spend
too little time in the field region for any energy exchange to take place between
them. Instead the field in the cavity becomes coupled to the atom, which changes
the phase of the field by

φ =
Ω2t

δ
for Ω << δ

if the atom was in the | e〉 state prior to entering the cavity and −φ if the atom
was in the | g〉 state.

This is how the field in the cavity C becomes the “detector” of the atom’s state.
After entanglement with the atom, the combined state of the photons+atom

system becomes | e〉⊗ | αeiφ〉 or | g〉⊗ | αe−iφ〉 and if the atom was in the super-
position state (| e〉+ | g〉) /√2 prior to entering the cavity C, the combined state
of the photons+atom system, after 19µs of the interaction in the cavity, ends up
in the superposition

1√
2

(| e〉⊗ | αeiφ〉+ | g〉⊗ | αe−iφ〉) .

This has a profound effect on the Ramsey fringes that are detected by Dg.
Figure 5.10 (b) shows Ramsey fringes when the cavity C is filled with 9.5 photons

on average and it is detuned from the Rabi frequency by 712 kHz. We can see that
the contrast has diminished somewhat and the peaks have shifed to the right a
little. The insert on the right hand side of the graph shows the field phase shift φ,
as phasors, for both the | e〉 and the | g〉 states.

Figure 5.10 (c) shows the same, but this time the cavity is detuned by 347 kHz.
We are getting closer to the Rabi frequency, thus increasing the entanglement be-
tween the atom and the photons in the cavity. The response registered by Dg shows
even more diminished contrast and even more shift in the location of the peaks.
The accompanying cavity field phase shift φ is somewhat larger than in the previous
case.

Finally, Figure 5.10 (d) shows Ramsey fringes for the cavity detuning of 104 kHz.
This time we are quite close to the Rabi frequency, though still not close enough for
the full interaction described by equation (5.46) to take place. The entanglement
between the atom and the photons is stronger still and the Ramsey fringes almost
disappear. The cavity field phase shift φ is larger still.

The blue balls at the tips of the phasors in the inserts represent the uncertainty
in the field’s phase, that is due to quantum fluctuations of the field. We can see that



The Biqubit 271

in Figure 5.10 (d) the phase difference between the two field states is sufficiently
large to be resolved even in the presence of the uncertainties. On the other hand,
the separation in Figure 5.10 (b) is too small and the two states are not resolvable.

The connection between our ability to resolve the two states of the “cat”, | αeiφ〉
and | αe−iφ〉, and the disappearance of the fringe pattern, which in the unitary
picture can be thought of as resulting from the interference of two amplitudes

〈g | e〉 = 〈g | R1 | e〉+ 〈g | R2 | e〉

is characteristic of quantum physics and shows up in many other situations. It is
often explained by hand-waving arguments about the conspiracy of nature. How-
ever, here we can carry out detailed calculations, because the problem of coupling
a qubit to 10 photons is still computable, and compare theoretical predictions to
observed, experimental data.

Figure 5.11: Ramsey fringe contrast (a), and shift (b), from [9].

The two graphs in Figure 5.11 show the results of theoretical calculations (smooth
curves) and of the actual measurements (data points with error bars) for the Ramsey
fringe contrast (a), and for the fringe shift (b) both in function of the cavity field
phase shift φ. The agreement between theory and measurement is indeed striking,
and it is here that the Haroche–Ramsey experiment is so remarkable.
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The almost total loss of contrast in Figure 5.10 (d) can be understood quite easily
by invoking the Bloch sphere picture. Let us identify | e〉 with |↑〉, and | g〉 with
|↓〉.

Just before the atom arrives at R1 it is in the |↑〉 state. The pulse in R1 rotates
it to |→〉 or some other “equatorial” state. Then the atom enters the “cat” cavity
and becomes entangled with the photons in it. The combined superposition state
that emerges from this interaction

1√
2

(|↑〉 | αeiφ〉+ |↓〉 | αe−iφ〉)

is pure, but if we were to trace the photons out, we would find that the qubit itself
is no longer in a pure state. We would find that it has dephased , as we have seen in
Section 5.11.3. The dephasing parameter Γ in equation (5.28) would be quite large
on account of the detuning being relatively small. Consequently, the exponent e−Γt

would kill rx and ry of the qubit, leaving only rz. But an “equatorial” state of a
qubit does not have any rz. So the qubit emerges from the cavity C in a completely
chaotic state r = 0. The application of the next Rabi pulse in R2 does nothing
to this state, it remains chaotic, and when it is finally measured by Dg and De it
returns a flat curve, as seen in Figure 5.11 (d).

The act of measurement commited by the “cat” destroys the original state of the
qubit, but the information about it survives in the “cat’s” φ. What more, tracing
the qubit out from the combined state has much less effect on the “cat” than tracing
the “cat” out of the combined state had on the qubit, because there is more of the
“cat”. And so, the “cat” will remain in the superposition

1√
2

(| αeiφ〉+ | αe−iφ〉)

or in a slightly mixed state that is very close to it.
This can be seen by sending another atom through C almost immediately after

the first atom. The role of the second atom is to read the state of the field in the
cavity.

This complicates the picture somewhat. The second atom entangles with the
cavity field, adding or subtracting another φ to its phase. Furthermore, through
the cavity field, the second atom also entangles with the first one. Were we to
neglect the progressing dephasing of the cavity field, the combined state of both
atoms and the cavity photons would be

1√
4

(| e〉2 | αei2φ〉 | e〉1+ | e〉2 | α〉 | g〉1+ | g〉2 | α〉 | e〉1+ | g〉2 | αe−i2φ〉 | g〉1
)
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Tracing the cavity field out lets us evaluate probabilities of correlated detections
for both atoms, Pee, Peg, Pge and Pgg. These depend on the frequency of the field
applied to the two Ramsey cavities R1 and R2, and on the time lapse between the
two atoms, τ . But it turns out that the following combination of the probabilities

η =
Pee

Pee + Peg
− Pge

Pge + Pgg

is largely independent of the Ramsey (R1 and R2) pulse frequency. This quantity
is our measure of the cavity field coherence. It should be 1/2 for very short times
τ (it is actually less than this in Figure 5.12 because of the same experimental
difficulties that reduce the expected contrast of Ramsey fringes) and we expect it
to decay exponentially with τ .

Why should the “cat” itself dephase? It dephases because it is, in turn, entangled
with the environment—for example its power source marked S in Figure 5.9.

Figure 5.12: Two atom correlation signal η in function of τ/Tr, where τ is the delay
between the two atoms and Tr is the cavity photon lifetime of 160µs, from [9].

Figure 5.12 shows what happens for the two detunings of δ = 2π×170 kHz (circles
and the dashed curve), and of δ = 2π × 70 kHz (triangles and the smooth curve),
with the cavity C filled by 3.3 photons on average. Circles and triangles correspond
to the measured data and the curves correspond to theoretical predictions.
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The field in the cavity indeed decoheres rapidly and on the time scale that is well
short of the photon lifetime Tr = 160µs. Furthermore, the field configuration that
corresponds to stronger entanglement and yields a larger phase shift φ (triangles
and the smooth line) decays faster.

The “cat” may remain longer in a superposition state if the two components of
the state do not differ sufficiently to see the difference. The more they do, the faster
the dephasing of the state.
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A controlled–not gate (cnot for short) is a biqubit gate that makes quantum
computing possible. In combination with single qubit unitary gates, the controlled–
not gate is a universal gate of quantum computation, meaning that every unitary
operation on an n-qubit register can be implemented by combining controlled–not

and single qubit unitary gates. In this the gate is similar to a nand gate known
from classical computing. Every Boolean and arithmetic operation on an n-bit
register can be implemented by a combination of nand gates.

Although the definition of a controlle–not gate is strikingly simple, the gate is
very hard to construct. The previous chapter explains why: we have to perform
a controlled operation on a biqubit. This is hard. Biqubits are hard to make and
hard to control, while maintaing their biqubitness, that is, entanglement, and the
state’s purity at the same time.

This chapter will illustrate this point by discussing various implementations and
simple uses of a controlled–not gate.

But first things first. What is a controlled not gate?
It is a single qubit not gate that is controlled by another qubit.
Consider a biqubit | ψ〉⊗ | η〉. Let the first qubit, the one on the left, be the

control qubit and the one on the right the object qubit of the gate. We define the
gate by saying that when the control qubit is in the | 0〉 state, then the gate is
inactive. It leaves the object qubit as it is. But when the control qubit is in the
| 1〉 state, then the gate flips the object qubit:

| 0〉 | 0〉 → | 0〉 | 0〉
| 0〉 | 1〉 → | 0〉 | 1〉
| 1〉 | 0〉 → | 1〉 | 1〉
| 1〉 | 1〉 → | 1〉 | 0〉 (6.1)

It is convenient to replace the explicit tensor notation with the following decimal
labeling of the biqubit states

| 0〉 | 0〉 ≡ | 0〉
| 0〉 | 1〉 ≡ | 1〉
| 1〉 | 0〉 ≡ | 2〉
| 1〉 | 1〉 ≡ | 3〉 (6.2)
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Using this representation we can rewrite equations (6.1) in the decimal form

| 0〉 → | 0〉
| 1〉 → | 1〉
| 2〉 → | 3〉
| 3〉 → | 2〉 (6.3)

and this leads to the following matrix representation of the gate

cnot =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (6.4)

6.1 Physical Realization of The Controlled not Gate

6.1.1 An NMR Gate

6.1.2 An All-Optical Gate

6.1.3 A Calcium Ion Gate

6.2 Universality of The Controlled-NOT Gate
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A Quaternions and Pauli Matrices

A.1 Hamilton quaternions

q = a+ bi + cj + dk

where
ii = jj = kk = −1

and
ijk = −1

from which it follows that

ij = −ji = k

jk = −kj = i

ki = −ik = j

Extraction of quaternion components:

a = < (q)

b = =i (q) = −<(iq)

c = =j (q) = −<(jq)

d = =k (q) = −<(kq)

For

a = axi + ayj + azk

b = bxi + byj + bzk

the following holds

ab = −~a ·~b+
(
~a×~b

)x

i +
(
~a×~b

)y

j +
(
~a×~b

)z

k

A.2 Pauli quaternions

q = a+ bσx + cσy + dσz
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where

σx = ii

σy = ij

σz = ik

and
σxσx = σyσy = σzσz = 1

and
σxσyσz = i

from which it follows that

σxσy = −σyσx = iσz

σyσz = −σzσy = iσx

σzσx = −σxσz = iσy

These can be encapsulated into

σiσj = δij1 + i
∑

k

εijkσk

Extraction of quaternion components:

a = < (q)

b = =x (q) = <(σxq)

c = =y (q) = <(σyq)

d = =z (q) = <(σzq)

For

a = axσx + ayσy + azσz

b = bxσx + byσy + bzσz

the following holds

ab = ~a ·~b+ i
((
~a×~b

)x

σx +
(
~a×~b

)y

σy +
(
~a×~b

)z

σz

)
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A.3 Pauli matrices

q = a1 + bσx + cσy + dσz

where

1 =
(

1 0
0 1

)

σx =
(

0 1
1 0

)

σy =
(

0 −i
i 0

)

σz =
(

1 0
0 −1

)

and where σx, σy and σz have all commutation properties identical with Pauli
quaternions. Pauli matrices are a representation of Pauli quaternions.

For all Pauli quaternions/matrices

2< = Tr

For
q = a1 + bσx + cσy + dσz

a =
1
2

Tr (q)

b =
1
2

Tr (σxq)

c =
1
2

Tr (σyq)

d =
1
2

Tr (σzq)

Canonical basis in the space of 2×2 matrices expressed in terms of Pauli matrices:

M0 =
(

1 0
0 0

)
=

1
2

(1 + σz)

M1 =
(

0 1
0 0

)
=

1
2

(σx + iσy)

M2 =
(

0 0
1 0

)
=

1
2

(σx − iσy)

M3 =
(

0 0
0 1

)
=

1
2

(1− σz) (A.1)
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B Bi-qubit Probability Matrices

ς1 = e0 + e1 + e2 + e3

ςx = e2

ςy = e3

ςz = e0 − e1

ς1A ⊗ ς1B = (e0A + e1A + e2A + e3A)⊗ (e0B + e1B + e2B + e3B)

=




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




ςxA ⊗ ς1B = e2A ⊗ (e0B + e1B + e2B + e3B)

=




0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0




ς1A ⊗ ςxB = (e0A + e1A + e2A + e3A)⊗ e2B

=




0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0




ςyA ⊗ ς1B = e3A ⊗ (e0B + e1B + e2B + e3B)

=




0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1




ς1A ⊗ ςyB = (e0A + e1A + e2A + e3A)⊗ e3B

=




0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1




ςzA ⊗ ς1B = (e0A − e1A)⊗ (e0B + e1B + e2B + e3B)
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=




1 1 1 1
−1 −1 −1 −1

0 0 0 0
0 0 0 0




ς1A ⊗ ςzB = (e0A + e1A + e2A + e3A)⊗ (e0B − e1B)

=




1 −1 0 0
1 −1 0 0
1 −1 0 0
1 −1 0 0




ςxA ⊗ ςxB = e2A ⊗ e2B

=




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




ςyA ⊗ ςyB = e3A ⊗ e3B

=




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




ςzA ⊗ ςzB = (e0A − e1A)⊗ (e0B − e1B)

=




1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0






C Tensor Products of Pauli Matrices

1⊗ 1 =
(

1 0
0 1

)
⊗

(
1 0
0 1

)

≡




1
(

1 0
0 1

)
0

(
1 0
0 1

)

0
(

1 0
0 1

)
1

(
1 0
0 1

)




=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (C.1)

σx ⊗ σx =
(

0 1
1 0

)
⊗

(
0 1
1 0

)

≡




0
(

0 1
1 0

)
1

(
0 1
1 0

)

1
(

0 1
1 0

)
0

(
0 1
1 0

)




=




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (C.2)

σy ⊗ σy =
(

0 −i
i 0

)
⊗

(
0 −i
i 0

)

≡




0
(

0 −i
i 0

)
−i

(
0 −i
i 0

)

i

(
0 −i
i 0

)
0

(
0 −i
i 0

)




=




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 (C.3)

σz ⊗ σz =
(

1 0
0 −1

)
⊗

(
1 0
0 −1

)
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≡




1
(

1 0
0 −1

)
0

(
1 0
0 −1

)

0
(

1 0
0 −1

)
−1

(
1 0
0 −1

)




=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 (C.4)
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